【物理】2020届一轮复习人教版 机械能守恒定律及其应用课时作业

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【物理】2020届一轮复习人教版 机械能守恒定律及其应用课时作业

‎2020届一轮复习人教版  机械能守恒定律及其应用 课时作业 ‎ (建议用时:40分钟)‎ ‎[基础对点练]‎ 题组一:机械能守恒的理解及判断 ‎1.在如图所示的物理过程示意图中,甲图一端固定有小球的轻杆,从右偏上30°角释放后绕光滑支点摆动;乙图为末端固定有小球的轻质直角架,释放后绕通过直角顶点的固定轴O无摩擦转动;丙图为轻绳一端连着一小球,从右偏上30°角处自由释放;丁图为置于光滑水平面上的带有竖直支架的小车,把用细绳悬挂的小球从图示位置释放,小球开始摆动,则关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是(  )‎ 甲             乙 丙             丁 A.甲图中小球机械能守恒 B.乙图中小球A机械能守恒 C.丙图中小球机械能守恒 D.丁图中小球机械能守恒 A [甲图过程中轻杆对小球不做功,小球的机械能守恒,A项正确;乙图过程中轻杆对小球A的弹力不沿杆的方向,会对小球做功,所以小球A 的机械能不守恒,但两个小球组成的系统机械能守恒,B项错误;丙图中小球在绳子绷紧的瞬间有动能损失,机械能不守恒,C项错误;丁图中小球和小车组成的系统机械能守恒,但小球的机械能不守恒,这是因为摆动过程中小球的轨迹不是圆弧,细绳会对小球做功,D项错误。]‎ ‎2.(2019·保定模拟)如图所示,倾角为θ的光滑斜面体C固定于水平地面上,小物块B置于斜面上,通过细绳跨过光滑的定滑轮与物体A相连接,释放后,A将向下运动,则在A碰地前的运动过程中(  )‎ A.A的加速度大小为g B.A机械能守恒 C.由于斜面光滑,所以B机械能守恒 D.A、B组成的系统机械能守恒 D [A向下运动的过程中除受到重力以外,还受到细绳向上的拉力,故A下落的加速度一定小于g,A项错误;A下落过程中,细绳的拉力做负功,A的机械能不守恒,B项错误;由于斜面光滑,A、B组成的系统在整个运动过程中,只有重力做功,系统机械能守恒,但细绳的拉力对B做正功,B的机械能增加,C项错误,D项正确。]‎ ‎3.(2019·昆明模拟)如图所示,固定的倾斜光滑杆上套有一个质量为m的小球,小球与一轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,已知杆与水平面之间的夹角θ<45°,当小球位于B点时,弹簧与杆垂直,此时弹簧处于原长。现让小球自C点由静止释放,在小球滑到杆底端的整个过程中,关于小球的动能、重力势能和弹簧的弹性势能,下列说法正确的是(  )‎ A.小球的动能与重力势能之和保持不变 B.小球的动能与重力势能之和先增大后减小 C.小球的动能与弹簧的弹性势能之和保持不变 D.小球的重力势能与弹簧的弹性势能之和保持不变 B [小球与弹簧组成的系统在整个过程中,机械能守恒。弹簧处于原长时弹性势能为零,小球从C 点到最低点过程中,弹簧的弹性势能先减小后增大,所以小球的动能与重力势能之和先增大后减小,A项错,B项对;小球的重力势能不断减小,所以小球的动能与弹簧的弹性势能之和不断增大,C项错;小球的初、末动能均为零,所以整个过程中小球的动能先增大后减小,所以小球的重力势能与弹簧的弹性势能之和先减小后增大,D项错。]‎ 题组二:单个物体的机械能守恒问题 ‎4.(多选)如图所示,两质量相同的小球A、B,分别用线悬在等高的O1、O2点,A球的悬线比B球的长,把两球的悬线均拉到水平位置后将小球无初速度释放,则经过最低点时(以悬点为零势能点)(  )‎ A.A球的速度等于B球的速度 B.A球的动能大于B球的动能 C.A球的机械能大于B球的机械能 D.A球的机械能等于B球的机械能 BD [初始时刻,两球的动能和势能均为0,运动过程中只有重力做功,机械能守恒,所以到达最低点时,两球的机械能相等,两球获得的动能分别等于各自重力势能的减少量,即Ek=mgl。]‎ ‎5.(多选)(2019·舟山模拟)如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动。小环从最高点A滑到最低点B的过程中,小环线速度大小的平方v2随下落高度h的变化图象可能是(  )‎ A   B    C     D AB [对小环由机械能守恒定律得mgh=mv2-mv,则v2=2gh+v,当v0‎ ‎=0时,B正确;当v0≠0时,A正确。]‎ ‎6.(2019·济南模拟)一轻绳系住一质量为m的小球悬挂在O点,在最低点先给小球一水平初速度,小球恰能在竖直平面内绕O点做圆周运动,若在水平半径OP的中点A处钉一枚光滑的钉子,仍在最低点给小球同样的初速度,则小球向上通过P点后将绕A点做圆周运动,则到达最高点N时,绳子的拉力大小为(  )‎ A.0      B.2mg C.3mg D.4mg C [恰能做圆周运动,则在最高点有mg=,解得 v=。由机械能守恒定律可知 mg·2R=mv-mv2,‎ 解得初速度v0=,‎ 设在最高点N的速度为v′,根据机械能守恒,则mgR=mv-mv′2,‎ 根据向心力公式:T+mg=,‎ 联立得T=3mg。故选项C正确。]‎ 题组三:多物体的机械能守恒问题 ‎7.如图所示,可视为质点的小球A、B用不可伸长的细软轻线连接,跨过固定在地面上半径为R的光滑圆柱,A的质量为B的两倍。当B位于地面时,A恰与圆柱轴心等高。将A由静止释放,B上升的最大高度是(  )‎ A.2R   B. C.   D. C [如图所示,以A、B整体为系统,以地面为零势能面,设A的质量为2m,B的质量为m,根据机械能守恒定律有2mgR=mgR+×3mv2,A落地后B将以速度v做竖直上抛运动,即有mv2=mgh,解得h=R。则B上升的高度为R+R=R,故选项C正确。]‎ ‎8.如图所示,在倾角为30°的光滑固定斜面上,放有两个质量分别为1 kg和2 kg的可视为质点的小球A和B,两球之间用一根长L=0.2 m的轻杆相连,小球B距水平面的高度h=0.1 m。两球由静止开始下滑到光滑地面上,不计球与地面碰撞时的机械能损失,g取10 m/s2。则下列说法中正确的是(  )‎ A.整个下滑过程中A球机械能守恒 B.整个下滑过程中B球机械能守恒 C.整个下滑过程中A球机械能的增加量为 J D.整个下滑过程中B球机械能的增加量为 J D [在整个下滑过程中,只有重力对系统做功,系统的机械能守恒,但在B球沿水平面滑行,而A球沿斜面滑行时,杆的弹力对A、B球做功,所以A、B球各自机械能不守恒,故A、B错误;根据系统机械能守恒得mAg(h+Lsin 30°)+mBgh=(mA+mB)v2,解得:v= m/s,整个下滑过程中B球机械能的增加量为mBv2-mBgh= J,故D正确;由系统机械能守恒知,A球机械能的减少量为 J,故C错误。]‎ ‎9.如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d。现将环从与定滑轮等高的A处由静止释放,当环沿直杆下滑距离也为d时(图中B处),下列说法正确的是(重力加速度为g)(  )‎ A.环刚释放时轻绳中的张力等于2mg B.环到达B处时,重物上升的高度为(-1)d C.环在B处的速度与重物上升的速度大小之比为 D.环减少的机械能大于重物增加的机械能 B [环释放后重物加速上升,故绳中张力一定大于2mg,A项错误;环到达B处时,绳与直杆间的夹角为45°,重物上升的高度h=(-1)d,B项正确;如图所示,将B处环速度v进行正交分解,重物上升的速度与其分速度v1大小相等,v1=vcos 45°=v,所以,环在B处的速度与重物上升的速度大小之比等于,C项错误;环和重物组成的系统机械能守恒,故D项错误。]‎ ‎[考点综合练]‎ ‎10.如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中(  )‎ A.圆环的机械能守恒 B.弹簧弹性势能变化了mgL C.圆环下滑到最大距离时,所受合力为零 D.圆环重力势能与弹簧弹性势能之和保持不变 B ‎ ‎[圆环在下滑的过程中,圆环和弹簧组成的系统机械能守恒,而圆环的机械能并不守恒,A项错误;在下滑到最大距离的过程中,圆环动能的变化量为零,因此圆环减少的重力势能转化为弹簧的弹性势能,即Ep=mg=mgL,B项正确;圆环下滑的过程中速度先增大后减小,加速度先减小后增大,下滑到最大距离时,向上的加速度最大,此时圆环所受合力不为零,C项错误;由于圆环重力势能、圆环的动能与弹簧的弹性势能之和为定值,因此圆环重力势能与弹簧弹性势能之和先减小后增大,D项错误。]‎ ‎11.如图所示,将一质量为m=0.1 kg的小球自水平平台右端O点以初速度v0水平抛出,小球飞离平台后由A点沿切线方向落入竖直光滑圆轨道ABC,并沿轨道恰好通过最高点C,圆轨道ABC的形状为半径R=2.5 m的圆截去了左上角127°的圆弧,CB为其竖直直径,(sin 53°=0.8,cos 53°=0.6,重力加速度g取10 m/s2)求:‎ ‎(1)小球经过C点的速度大小;‎ ‎(2)小球运动到轨道最低点B时轨道对小球的支持力的大小;‎ ‎(3)平台末端O点到A点的竖直高度H。‎ 解析:(1)小球恰好运动到C点时,重力提供向心力 即mg=m,vC==5 m/s。‎ ‎(2)从B点到C点,由机械能守恒定律有 mv+mg·2R=mv 在B点对小球进行受力分析,由牛顿第二定律有 FN-mg=m 联立解得vB=5 m/s,FN=6 N。‎ ‎(3)从A到B由机械能守恒定律有 mv+mgR(1-cos 53°)=mv 所以vA= m/s 在A点进行速度的分解有,vy=vAsin 53°‎ 所以H==3.36 m。‎ 答案:(1)5 m/s (2)6 N (3)3.36 m ‎12.如图所示,半径为r、质量不计的圆盘盘面与地面垂直,圆心处有一个垂直于盘面的光滑水平固定轴O,在盘的右边缘固定有一个质量为m的小球A,在O点正下方离O点处固定一个质量也为m的小球B,放开盘让其自由转动。‎ ‎(1)当A转动到最低点时,两小球的重力势能之和减少了多少?‎ ‎(2)A球转到最低点时的线速度是多少?‎ 解析:(1)以通过固定轴O的水平面为零势能面,开始时两球的重力势能之和为 Ep1=EpA+EpB=0-mgr=-mgr,‎ 当小球A转至最低点时两小球重力势能之和为 Ep2=EpA+EpB=-mgr+0=-mgr,‎ 故两球重力势能之和减少量为 ΔEp减=Ep1-Ep2=-mgr-(-mgr)=mgr。‎ ‎(2)由于圆盘转动过程中,系统只有动能和重力势能相互转化,系统的机械能守恒,因此系统的重力势能的减少一定等于两球动能的增加。设A球转至最低点时,A、B的线速度分别为vA和vB,则mgr=mv+mv。因A、B两球固定在同一圆盘上,转动过程中角速度相等,故线速度的关系为vA=2vB,解得vA=。‎ 答案:(1)mgr (2)
查看更多

相关文章

您可能关注的文档