【物理】2019届一轮复习苏教版第三章牛顿运动定律教案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【物理】2019届一轮复习苏教版第三章牛顿运动定律教案

第三章 牛顿运动定律 第1节牛顿第一定律__牛顿第三定律 ‎(1)牛顿第一定律是实验定律。(×)‎ ‎(2)在水平面上运动的物体最终停下来,是因为水平方向没有外力维持其运动的结果。(×)‎ ‎(3)运动的物体惯性大,静止的物体惯性小。(×)‎ ‎(4)物体的惯性越大,运动状态越难改变。(√)‎ ‎(5)作用力与反作用力可以作用在同一物体上。(×)‎ ‎(6)作用力与反作用力的作用效果不能抵消。(√)‎ ‎(1)伽利略利用“理想实验”得出“力是改变物体运动状态的原因”的观点,推翻了亚里士多德的“力是维持物体运动的原因”的错误观点。‎ ‎(2)英国科学家牛顿在《自然哲学的数学原理》著作中提出了“牛顿第一、第二、第三定律”。‎ 突破点(一) 牛顿第一定律的理解 ‎1.对牛顿第一定律的理解 ‎(1)提出惯性的概念:牛顿第一定律指出一切物体都具有惯性,惯性是物体的一种固有属性。‎ ‎(2)揭示力的本质:力是改变物体运动状态的原因,而不是维持物体运动状态的原因。‎ ‎2.惯性的两种表现形式 ‎(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)。‎ ‎(2)物体受到外力时,惯性表现为抗拒运动状态改变的能力。惯性大,物体的运动状态较难改变;惯性小,物体的运动状态容易改变。‎ ‎3.与牛顿第二定律的对比 牛顿第一定律是经过科学抽象、归纳推理总结出来的,而牛顿第二定律是一条实验定律。‎ ‎[题点全练]‎ ‎1.(2018·三明检测)科学思维和科学方法是我们认识世界的基本手段。在研究和解决问题的过程中,不仅需要相应的知识,还需要运用科学的方法。理想实验有时更能深刻地反映自然规律,伽利略设想了一个理想实验,如图所示。‎ ‎①两个对接的斜面,静止的小球沿一个斜面滚下,小球将滚上另一个斜面;‎ ‎②如果没有摩擦,小球将上升到原来释放的高度;‎ ‎③减小第二个斜面的倾角,小球在这个斜面上仍然会达到原来的高度;‎ ‎④继续减小第二个斜面的倾角,最后使它成为水平面,小球会沿水平面做持续的匀速运动。‎ 通过对这个实验的分析,我们可以得到的最直接结论是(  )‎ A.自然界的一切物体都具有惯性 B.光滑水平面上运动的小球,运动状态的维持并不需要外力 C.如果小球受到力的作用,它的运动状态将发生改变 D.小球受到的力一定时,质量越大,它的加速度越小 解析:选B 理想斜面实验只能说明钢球具有惯性,推广到一切物体的是牛顿,A错误;伽利略通过“理想斜面实验”和科学推理,得出的结论是:力不是维持物体运动的原因,光滑水平面上运动的小球,运动状态的维持并不需要外力,B正确;如果小球受到力的作用,它的运动状态将发生改变,这是牛顿得出的,C错误;小球受到的力一定时,质量越大,它的加速度越小,这是牛顿第二定律内容,D错误。‎ ‎2.(2018·江都月考)‎ 在水平的路面上有一辆匀速行驶的小车,车上固定一盛满水的碗。现突然发现碗中的水洒出,水洒出的情况如图所示,则关于小车在此种情况下的运动叙述正确的是(  )‎ A.小车匀速向左运动 B.小车可能突然向左加速运动 C.小车可能突然向左减速运动 D.小车可能突然向右加速运动 解析:选B 若小车匀速向左运动,则水也匀速运动,速度相等,碗中的水不会洒出,故A错误;小车突然向左加速,由于惯性,水还没有来得及加速,所以碗向左的速度大于水向左的速度,可以出现图示情况,故B正确;小车突然向左减速,由于惯性,水还没有来得及减速,所以小车向左的速度小于水向左的速度,水应向左洒出,故C错误;小车突然向右加速,由于惯性,水还没有来得及加速,所以碗向右的速度大于水向右的速度,水应向左洒出,故D错误。‎ ‎3.[多选]如图所示,在匀速前进的磁悬浮列车里,小明将一小球放在水平桌面上,且小球相对桌面静止。关于小球与列车的运动,下列说法正确的是(  )‎ A.若小球向前滚动,则磁悬浮列车在加速前进 B.若小球向后滚动,则磁悬浮列车在加速前进 C.磁悬浮列车急刹车时,小球向前滚动 D.磁悬浮列车急刹车时,小球向后滚动 解析:选BC 由于惯性,小球要保持原来的匀速运动状态,若小球向前滚动,则说明磁悬浮列车在减速前进,若小球向后滚动,则说明磁悬浮列车在加速前进,故B正确,A错误;反之,若磁悬浮列车急刹车时,磁悬浮列车速度变小,小球由于惯性速度不变,故向前滚动,C正确,D错误。‎ 突破点(二) 牛顿第三定律的理解 ‎1.作用力与反作用力的“六同、三异、二无关”‎ ‎(1)六同 ‎(2)三异 ‎(3)二无关 ‎2.作用力、反作用力与一对平衡力的比较 作用力和反作用力 一对平衡力 不同点 作用在两个物体上 作用在同一物体上 力的性质一定相同 对力的性质无要求 作用效果不可抵消 作用效果相互抵消 相同点 大小相等、方向相反,作用在同一直线上 ‎[题点全练]‎ ‎1.气球冒险家利用一簇气球使一座房屋成功升空。图示时刻房屋正在加速上升,此时(  )‎ A.绳对房屋的拉力与房屋对绳的拉力大小相等 B.房屋对绳的拉力与房屋所受的重力大小相等 C.房屋受到的绳的拉力与房屋所受的重力是一对平衡力 D.房屋对绳的拉力与房屋所受的重力是一对作用力和反作用力 解析:选A 绳对房屋的拉力与房屋对绳的拉力是一对作用力和反作用力,则大小相等,选项A正确;房屋对绳的拉力与绳对房屋的拉力大小相等,因加速上升,则绳对房屋的拉力大于房屋所受的重力,则房屋对绳的拉力大于房屋所受的重力,选项B错误;因加速上升,则房屋受到的绳的拉力与房屋所受的重力不是一对平衡力,选项C错误;房屋对绳的拉力与房屋所受的重力不是一对作用力和反作用力,选项D错误。‎ ‎2.(2018·天津模拟)物体静止于水平桌面上,则(  )‎ A.物体对桌面的压力和桌面对物体的支持力是一对相互平衡的力 B.物体的重力和桌面对它的支持力是一对作用力与反作用力 C.物体对桌面的压力就是物体的重力,这两个力是同性质的力 D.桌面对物体的支持力大小等于物体的重力大小,这两个力是一对平衡力 解析:选D 物体对桌面的压力和桌面对物体的支持力是一对作用力与反作用力,故A错误;物体的重力和物体对地球的吸引力是一对作用力与反作用力,故B错误;压力不是重力,它们的施力物体、受力物体、作用点都不相同,故C错误;物体的重力是作用在物体上的力,支持力也是作用在这个物体上的力,这两个力大小相等、方向相反且作用在同一直线上,所以这两个力是一对平衡力,故D正确。‎ ‎3.(2018·扬州二模)牛顿在总结C.雷恩、J.沃利斯和C.惠更斯等人的研究结果后,提出了著名的牛顿第三定律,阐述了作用力和反作用力的关系,从而与牛顿第一定律和牛顿第二定律形成了完整的牛顿力学体系。下列关于作用力和反作用力的说法正确的是(  )‎ A.物体先对地面产生压力,然后地面才对物体产生支持力 B.物体对地面的压力和地面对物体的支持力互相平衡 C.人推车加速前进,人对车的作用力的大小等于车对人的作用力的大小 D.物体在地面上滑行,物体对地面的摩擦力大于地面对物体的摩擦力 解析:‎ 选C 物体对地面的压力和地面对物体的支持力是一对作用力与反作用力,是同时产生的,所以选项A错误;物体对地面的压力和地面对物体的支持力分别作用在地面和物体上,是一对作用力与反作用力,不是平衡力,选项B错误;人对车的作用力与车对人的作用力是一对作用力与反作用力,大小相等,选项C正确;物体对地面的摩擦力与地面对物体的摩擦力是一对作用力与反作用力,大小相等,选项D错误。‎ 突破点(三) 应用牛顿第三定律转换研究对象 ‎[典例] (2018·海口模拟)建筑工人用如图所示的定滑轮装置运送建筑材料。一质量为70.0 kg的工人站在地面上,通过定滑轮将20.0 kg的建筑材料以0.500 m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)(  )‎ A.510 N       B.490 N C.890 N D.910 N ‎[思路点拨]‎ ‎(1)明确物体间的相互作用:‎ ‎(2)转换研究对象:‎ ‎①求地面所受压力时,由于地面无其他信息,因此转换到求人受地面的支持力。‎ ‎②求绳对人的拉力时,人的受力情况复杂,因此转换到求建材所受绳的拉力。‎ ‎(3)根据牛顿第三定律,转换研究对象后所求的力与待求力是“等大”的,因此问题得以巧妙地解出。‎ ‎[解析] 设绳子对物体的拉力为F1,F1-mg=ma F1=m(g+a)=210 N ‎ 绳子对人的拉力F2=F1=210 N 人处于静止状态,则地面对人的支持力 FN=Mg-F2=490 N,‎ 由牛顿第三定律知:人对地面的压力 FN′=FN=490 N 故B项正确。‎ ‎[答案] B ‎[方法规律]‎ 如果不能直接求解物体受到的某个力时,可先求它的反作用力,如求压力时可先求支持力。在许多问题中,摩擦力的求解亦是如此。利用牛顿第三定律转换研究对象,可以使我们分析问题的思路更灵活、更开阔。‎ ‎[集训冲关]‎ ‎1.如图所示,用弹簧测力计悬挂一个重G=10 N的金属块,使金属块一部分浸在台秤上的水杯中(水不会溢出)。若弹簧测力计的示数变为FT=6 N,则台秤的示数比金属块没有浸入水前(  )‎ A.保持不变 B.增加10 N C.增加6 N D.增加4 N 解析:选D 对金属块受力分析,由平衡条件可知,水对金属块的浮力为F=G-FT=4 N,方向竖直向上,则由牛顿第三定律可得,金属块对水的作用力大小为F′=4 N,方向竖直向下,所以台秤的示数比金属块没有浸入水前增加了4 N,选项D正确。‎ ‎2.如图所示,质量为m的木块在质量为M的长木板上水平向右加速滑行,长木板与地面间的动摩擦因数为μ1,木块与长木板间的动摩擦因数为μ2,若长木板仍处于静止状态,则长木板对地面摩擦力大小一定为(  )‎ A.μ1(m+M)g B.μ2mg C.μ1mg D.μ1mg+μ2Mg 解析:选B 木块在长木板上向右滑行过程中,受到长木板对木块水平向左的滑动摩擦力,由牛顿第三定律可知,木块对长木板有水平向右的滑动摩擦力,大小为μ2mg,由于长木板处于静止状态,水平方向合力为零,故地面对长木板的静摩擦力方向水平向左,大小为μ2mg,由牛顿第三定律可知,长木板对地面的摩擦力大小为μ2mg,故B正确。‎ ‎3.一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱子与杆的质量为M,环的质量为m,如图所示。已知环沿杆匀加速下滑时,环与杆间的摩擦力大小为Ff,则此时箱子对地面的压力大小为(  )‎ A.Mg+Ff B.Mg-Ff C.Mg+mg D.Mg-mg 解析:选A 环在竖直方向上受重力及箱子的杆对它的竖直向上的摩擦力Ff,受力情况如图甲所示,根据牛顿第三定律,环应对杆有竖直向下的摩擦力Ff′,故箱子竖直方向上受重力Mg、地面对它的支持力FN及环对它的摩擦力Ff′,受力情况如图乙所示,由于箱子处于平衡状态,可得FN=Ff′+Mg=Ff+Mg。根据牛顿第三定律,箱子对地面的压力大小等于地面对箱子的支持力,即FN′=Mg+Ff,故选项A正确。‎ 惯性的“相对性”‎ ‎(一)空气中的铁球和乒乓球 ‎1.如图所示,一容器固定在一个小车上,在容器中分别悬挂一只铁球和一只乒乓球,容器中铁球和乒乓球都处于静止状态,当容器随小车突然向右运动时,两球的运动情况是(以小车为参考系)(  )‎ A.铁球向左,乒乓球向右   B.铁球向右,乒乓球向左 C.铁球和乒乓球都向左 D.铁球和乒乓球都向右 解析:选C 由于惯性,当容器随小车突然向右运动时,铁球和乒乓球都相对容器向左运动,C正确。‎ ‎(二)水中的铁球和乒乓球 ‎2.如图所示,一盛水的容器固定在一个小车上,在容器中分别悬挂和拴住一只铁球和一只乒乓球。容器中的水和铁球、乒乓球都处于静止状态。当容器随小车突然向右运动时,两球的运动状况是(以小车为参考系)(  )‎ A.铁球向左,乒乓球向右 B.铁球向右,乒乓球向左 C.铁球和乒乓球都向左 D.铁球和乒乓球都向右 解析:选A 因为小车突然向右运动,铁球和乒乓球都有向右运动的趋势,但由于与同体积的“水球”相比,铁球质量大、惯性大,铁球的运动状态难改变,即速度变化慢,而同体积的“水球”的运动状态容易改变,即速度变化快,而且水和车一起向右运动,所以小车向右运动时,铁球相对小车向左运动。同理,由于乒乓球与同体积的“水球”相比,质量小,惯性小,乒乓球相对小车向右运动。‎ ‎ ‎(1)质量是物体惯性大小的唯一量度,物体的质量越大,惯性越大,状态越难改变。‎ ‎(2)悬挂在空气中的铁球和乒乓球的惯性都比对应的“空气球”的惯性大,但悬挂在水中的乒乓球的惯性没有对应的“水球”的惯性大。 ‎ 对点训练:牛顿第一定律的理解 ‎1.(2018·揭阳模拟)在物理学史上,正确认识运动和力的关系且推翻“力是维持物体运动的原因”这个观点的物理学家及建立惯性定律的物理学家分别是(  )‎ A.亚里士多德、伽利略   B.伽利略、牛顿 C.伽利略、爱因斯坦 D.亚里士多德、牛顿 解析:选B 伽利略通过斜面实验正确认识了运动和力的关系,从而推翻了亚里士多德“力是维持物体运动的原因”的错误观点;牛顿在归纳总结伽利略、笛卡儿等科学家的结论基础上得出了牛顿第一定律,即惯性定律,故选项B正确。‎ ‎2.(2018·镇江模拟)下面是摘自上个世纪美国报纸上的一篇文章:‎ 阿波罗登月火箭在脱离地球飞向月球的过程中,宇航员通过无线电与在家中上小学的儿子汤姆通话。宇航员:“汤姆,我们现在已关闭了火箭上所有的发动机,正向月球飞去。”汤姆:“你们关闭了所有的发动机,那么靠什么力量推动火箭向前运动呢?”宇航员犹豫了半天,说:“我想大概是伽利略在推动火箭向前运动吧。”‎ 若不计天体对火箭的引力,由上述材料可知下列说法错误的是(  )‎ A.汤姆问话所体现的物理思想是“力是维持物体运动的原因”‎ B.宇航员答话所体现的物理思想是“力是维持物体运动的原因”‎ C.宇航员答话所体现的物理思想是“物体运动不需要力来维持”‎ D.宇航员答话的真实意思是火箭正在依靠惯性飞行 解析:选B 汤姆说:“你们关闭了所有的发动机,那么靠什么力量推动火箭向前运动呢?”,想表达的真实意思是“火箭的运动需要力来维持”,故A正确;由题意知,宇航员说大概是伽利略在推动火箭向前运动,真实意思是根据伽利略的理论,“火箭的运动不需要力来维持”,火箭正在依靠惯性飞行,而不是伽利略用力推动着火箭向前运动,故B错误,C、D正确。‎ ‎3.(2018·淮安调研)对物体的惯性有这样一些理解,你觉得哪些是正确的(  )‎ A.汽车快速行驶时惯性大,因而刹车时费力,惯性与物体的速度大小有关 B.在月球上举重比在地球上容易,所以同一物体在地球上惯性比在月球上大 C.加速运动时,物体有向后的惯性;减速运动时,物体有向前的惯性 D.不论在什么地方,不论物体原有运动状态如何,物体的惯性是客观存在的,惯性的大小与物体的质量有关 解析:‎ 选D 惯性就是物体保持原来的运动状态的性质,与物体速度大小无关,故A错误;惯性大小的唯一量度是物体的质量,同一物体,质量不变,则惯性不变,故B错误;惯性就是物体保持原来的运动状态的性质,无论是加速运动还是减速运动,物体都保持原来运动状态的性质,故C错误;惯性大小的唯一量度是物体的质量,不论在什么地方,不论物体原有运动状态如何,物体的惯性是客观存在的,惯性的大小与物体的质量有关,故D正确。‎ ‎4.(2018·益阳模拟)亚里士多德在其著作《物理学》中说:一切物体都具有某种“自然本性”,物体由其“自然本性”决定的运动称之为“自然运动”,而物体受到推、拉、提、举等作用后的非“自然运动”称之为“受迫运动”。伽利略、笛卡尔、牛顿等人批判地继承了亚里士多德的这些说法,建立了新物理学。新物理学认为一切物体都具有的“自然本性”是“惯性”。下列关于“惯性”和“运动”的说法中不符合新物理学的是(  )‎ A.一切物体的“自然运动”都是速度不变的运动——静止或者匀速直线运动 B.作用在物体上的力,是使物体做“受迫运动”即变速运动的原因 C.可绕竖直轴转动的水平圆桌转得太快,放在桌面上的盘子会向桌子边缘滑去,这是由于“盘子受到的向外的力”超过了“桌面给盘子的摩擦力”导致的 D.竖直向上抛出的物体,受到了重力,却没有立即反向运动,而是继续向上运动一段距离后才反向运动,是由于物体具有惯性 解析:选C 力不是维持物体运动的原因,力是改变物体运动状态的原因,所以当物体不受到任何外力的时候,总保持静止或者匀速运动的状态,故选项A正确;当物体受到外力作用的时候,物体的运动状态会发生改变,即力是改变物体运动状态的原因,故选项B正确;可绕竖直轴转动的水平圆桌转得太快时,放在桌面上的盘子会向桌子边缘滑去,这是由于“盘子需要的向心力”超过了“桌面给盘子的摩擦力”导致的,故选项C错误;物体具有向上的速度,由于具有保持这种运动状态的惯性,虽然受到向下的重力,但物体不会立即向下运动,故选项D正确。‎ ‎5.(2018·苏锡常镇四地名校联考)关于惯性的认识,以下说法正确的是(  )‎ A.物体受到力的作用后,运动状态发生改变,惯性也随之改变 B.置于光滑水平面上的物体即使质量很大也能被拉动,说明惯性与物体的质量无关 C.让物体的速度发生改变,无论多快,都需要一定时间,这是因为物体具有惯性 D.同一物体沿同一水平面滑动,速度较大时停下来需要的时间较长,说明惯性与速度有关 解析:选C 物体受到力的作用后,运动状态发生改变,但物体的惯性完全由物体的质量决定,与物体的受力及运动速度无关,故A、B、D均错误;一切物体都具有惯性,所以让物体受力使其速度发生改变,都需要一定时间,所以C正确。‎ ‎6.如图所示,在一辆表面光滑且足够长的小车上,有质量为m1和m2的两个小球(m1>m2)随车一起匀速运动,当车突然停止时,若不考虑其他阻力,则两个小球(  )‎ A.一定相碰 B.一定不相碰 C.不一定相碰 D.无法确定 解析:选B 因小车表面光滑,因此小球在水平方向上不会受到外力作用,原来两小球与小车有相同的速度,当车突然停止时,由于惯性,两小球的速度将不变,所以不会相碰。‎ 对点训练:牛顿第三定律的理解 ‎7.如图所示是我国一种传统的民族体育项目“押加”,实际上相当于两个人拔河,如果绳质量不计,且保持水平,甲、乙两人在“押加”比赛中甲获胜,则下列说法中正确的是(  )‎ A.甲对乙的拉力始终大于乙对甲的拉力 B.甲把乙加速拉过去时,甲对乙的拉力大于乙对甲的拉力 C.只有当甲把乙匀速拉过去时,甲对乙的拉力大小才等于乙对甲的拉力大小 D.甲对乙的拉力大小始终等于乙对甲的拉力大小,只是地面对甲的摩擦力大于地面对乙的摩擦力 解析:选D 甲拉乙的力与乙拉甲的力是一对作用力与反作用力,大小始终相等,与运动状态无关,故A、B、C错误;即不管哪个获胜,甲对乙的拉力大小始终等于乙对甲的拉力大小,只是当地面对甲的摩擦力大于地面对乙的摩擦力,甲才能获胜,故D正确。‎ ‎8.(2018·济宁模拟)如图所示为体操男子吊环比赛中某个时刻的模拟图,运动员静止不动,两根吊带对称并与竖直方向有一定的夹角。此时左、右两吊环对运动员的作用力大小分别为F1、F2。则下列判断中正确的是(  )‎ A.F1、F2是一对作用力和反作用力 B.两个吊环对运动员的作用力的合力一定竖直向上 C.每根吊带受到吊环的拉力的大小都等于运动员重力的一半 D.在运动员将两吊带由图示状态再缓慢向两边撑开的过程中,吊带上的张力缓慢增大 解析:选B 运动员的受力简化为如图所示。由共点力的平衡可知,在竖直方向上:‎ F1cos θ+F2cos θ=G 在水平方向上:F1sin θ=F2sin θ 解得:F1=F2=;F1、F2都作用在运动员上,不可能成为一对作用力和反作用力,故A错误;运动员受吊环的拉力及重力而处于平衡状态,三力为共点力,根据共点力平衡的特点可知,两个吊环对运动员的作用力的合力一定竖直向上,故B正确;由公式可知,由于cos θ≤1,每根吊带所受的拉力大小都大于等于运动员重力的一半,故C错误;在运动员将两吊带再缓慢向两边撑开的过程中,角度θ减小,故两根吊带的拉力均减小,故D错误。‎ ‎9.[多选]如图所示,用水平力F把一个物体紧压在竖直墙壁上静止,下列说法中正确的是(  )‎ A.水平力F跟墙壁对物体的压力是一对作用力与反作用力 B.物体的重力跟墙壁对物体的静摩擦力是一对平衡力 C.水平力F与物体对墙壁的压力是一对作用力与反作用力 D.物体对墙壁的压力与墙壁对物体的压力是一对作用力与反作用力 解析:选BD 水平力F跟墙壁对物体的压力作用在同一物体上,大小相等,方向相反,且作用在一条直线上,是一对平衡力,选项A错误;物体在竖直方向上受竖直向下的重力以及墙壁对物体竖直向上的静摩擦力的作用,因物体处于静止状态,故这两个力是一对平衡力,选项B正确;水平力F作用在物体上,而物体对墙壁的压力作用在墙壁上,这两个力不是平衡力,也不是相互作用力,选项C错误;物体对墙壁的压力与墙壁对物体的压力是两个物体间的相互作用力,是一对作用力与反作用力,选项D正确。‎ 对点训练:应用牛顿第三定律转换研究对象 ‎10.(2018·乐山模拟)如图所示,家用吊扇对悬挂点有拉力作用,正常转动时吊扇对悬挂点的拉力与它不转动时相比(  )‎ A.变大 B.变小 C.不变 D.无法判断 解析:选B 吊扇不转动时,吊扇对悬挂点的拉力等于吊扇的重力,吊扇旋转时要向下扑风,即对空气有向下的压力,根据牛顿第三定律,空气也对吊扇有一个向上的反作用力,使得吊扇对悬挂点的拉力减小,B正确。‎ ‎11.如图所示,两块小磁铁质量均为0.5 kg,A磁铁用轻质弹簧吊在天花板上,B磁铁在A正下方的地板上,弹簧的原长L0=10 cm,劲度系数k=100 N/m。当A、B均处于静止状态时,弹簧的长度为L=11 cm。不计地磁场对磁铁的作用和磁铁与弹簧间相互作用的磁力,求B对地面的压力大小。(g取10 m/s2)‎ 解析:A受力如图甲所示,由平衡条件得:k(L-L0)-mg-F=0‎ 解得:F=-4 N 故B对A的作用力大小为4 N,方向竖直向上。‎ 由牛顿第三定律得A对B的作用力 F′=-F=4 N,方向竖直向下B受力如图乙所示,由平衡条件得:FN-mg-F′=0‎ 解得:FN=9 N 由牛顿第三定律得B对地面的压力大小为9 N。‎ 答案:9 N 考点综合训练 ‎12.[多选](2018·定州中学月考)2017年4月20日19时41分,搭载着我国首颗货运飞船“天舟一号”的长征七号遥二运载火箭在文昌航天发射中心点火发射,下面关于飞船与火箭上天的情形叙述正确的是(  )‎ A.火箭尾部向下喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得了向上的推力 B.火箭尾部喷出的气体对空气产生一个作用力,空气的反作用力使火箭获得飞行的动力 C.火箭飞出大气层后,由于没有了空气,火箭虽然向后喷气,但也无法获得前进的动力 D.飞船进入运行轨道之后,与地球之间仍然存在一对作用力与反作用力 解析:选AD 火箭尾部向下喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得了向上的推力,故A正确,B错误;火箭飞出大气层后,虽然没有了空气,火箭向后喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得前进的动力,故C错误;飞船进入运行轨道之后,与地球之间仍然存在一对作用力与反作用力,即地球对飞船的引力和飞船对地球的引力,故D正确。‎ ‎13.如图所示,甲、乙两人在冰面上“拔河”。两人中间位置处有一分界线,约定先使对方过分界线者为赢。若绳子质量不计,冰面可看成光滑,则下列说法正确的是(  )‎ A.甲对绳的拉力与绳对甲的拉力是一对平衡力 B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力 C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利 D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利 解析:选C 根据牛顿第三定律可知甲对绳的拉力与绳对甲的拉力是一对作用力与反作用力,选项A错误;因为甲和乙的力作用在同一个物体上,故选项B错误;若甲的质量比较大,甲的惯性比乙的大,故运动状态改变比乙难,故乙先过界,选项C正确;“拔河”比赛的输赢只与甲、乙的质量有关,与收绳速度无关,选项D错误。‎ ‎14.(2018·萧山模拟)如图所示是我国首次立式风洞跳伞实验,风洞喷出竖直向上的气流将实验者加速向上“托起”,此过程中(  )‎ A.地球对人的吸引力和人对地球的吸引大小相等 B.人受到的重力和人受气流的力是一对作用力和反作用力 C.人受到的重力大小等于气流对人的作用力大小 D.人被向上“托起”时处于失重状态 解析:选A 地球对人的吸引力和人对地球的吸引力是作用力和反作用力,大小相等,故A正确;实验者加速向上运动,合力向上不为零,受气流的力大于重力,故B、C错误;人被向上“托起”时,加速度向上,处于超重,故D错误。‎ ‎15.如图所示为英国人阿特伍德设计的装置,不考虑绳与滑轮的质量,不计轴承、绳与滑轮间的摩擦。初始时两人均站在水平地面上,当位于左侧的甲用力向上攀爬时,位于右侧的乙始终用力抓住绳子,最终至少一人能到达滑轮。下列说法中正确的是(  )‎ A.若甲的质量较大,则乙先到达滑轮 B.若甲的质量较大,则甲、乙同时到达滑轮 C.若甲、乙质量相同,则乙先到达滑轮 D.若甲、乙质量相同,则甲先到达滑轮 解析:选A 由于滑轮光滑,甲拉绳子的力等于绳子拉乙的力,若甲的质量大,则由甲拉绳子的力等于乙受到的绳子拉力,得甲攀爬时乙的加速度大于甲,所以乙会先到达滑轮,选项A正确,选项B错误;若甲、乙的质量相同,甲用力向上攀爬时,甲拉绳子的力等于绳子拉乙的力,甲、乙具有相同的加速度和速度,所以甲、乙应同时到达滑轮,选项C、D错误。‎ ‎16.如图所示,圆环的质量为M,经过环心的竖直钢丝AB上套有一个质量为m的小球,今让小球沿钢丝AB以初速度v0竖直向上运动,要使圆环对地面无压力,则小球的加速度和小球能达到的最大高度是多少?(设小球不会到达A点)‎ 解析:由牛顿第三定律知,若圆环对地面无压力,则地面对圆环无支持力,取小球为研究对象,受重力mg和钢丝对小球竖直向下的摩擦力Ff,由牛顿第二定律得:mg+Ff=ma 由牛顿第三定律可知小球对钢丝竖直向上的摩擦力Ff′=Ff 对圆环受力分析可知,圆环受重力Mg和竖直向上的摩擦力Ff′作用,则:Mg=Ff′由以上各式解得:a=g 小球沿钢丝做匀减速运动,由运动学公式可得上升的最大高度x==。‎ 答案:g  第2节牛顿第二定律__两类动力学问题 ‎,‎ ‎(1)物体加速度的方向一定与合外力方向相同。(√)‎ ‎(2)质量越大的物体,加速度越小。(×)‎ ‎(3)物体的质量与加速度成反比。(×)‎ ‎(4)物体受到外力作用,立即产生加速度。(√)‎ ‎(5)可以利用牛顿第二定律确定自由电子的运动情况。(×)‎ ‎(6)物体所受的合外力减小,加速度一定减小,而速度不一定减小。(√)‎ ‎(7)千克、秒、米、库仑、安培均为国际单位制的基本单位。(×)‎ ‎(8)力的单位牛顿,简称牛,属于导出单位。(√)‎ 突破点(一) 牛顿第二定律的理解 ‎1.牛顿第二定律的五个特性 ‎2.合力、加速度、速度之间的决定关系 ‎(1)不管速度是大是小,或是零,只要合力不为零,物体都有加速度。‎ ‎(2)a=是加速度的定义式,a与Δv、Δt无必然联系;a=是加速度的决定式,a∝F,a∝。‎ ‎(3)合力与速度同向时,物体加速运动;合力与速度反向时,物体减速运动。‎ ‎[题点全练]‎ ‎1.[多选](2016·全国卷Ⅰ)一质点做匀速直线运动。现对其施加一恒力,且原来作用在质点上的力不发生改变,则(   )‎ A.质点速度的方向总是与该恒力的方向相同 B.质点速度的方向不可能总是与该恒力的方向垂直 C.质点加速度的方向总是与该恒力的方向相同 D.质点单位时间内速率的变化量总是不变 解析:选BC 质点原来做匀速直线运动,说明所受合外力为0,当对其施加一恒力后,恒力的方向与原来运动的速度方向关系不确定,则质点可能做直线运动,也可能做曲线运动,但加速度的方向一定与该恒力的方向相同,选项B、C正确。 ‎ ‎2.(2016·上海高考)如图,顶端固定着小球的直杆固定在小车上,当小车向右做匀加速运动时,球所受合外力的方向沿图中的(  )‎ A.OA方向       B.OB方向 C.OC方向 D.OD方向 解析:选D 据题意可知,小车向右做匀加速直线运动,由于球固定在杆上,而杆固定在小车上,则三者属于同一整体,根据整体法和隔离法的关系分析可知,球和小车的加速度相同,所以球的加速度也向右,即沿OD方向,故选项D正确。‎ ‎3.(2018·镇江模拟)光滑的水平面上,有一木块以速度v向右运动,一根弹簧固定在墙上,如图所示,木块从与弹簧接触直到使弹簧压缩至最短的过程中木块将做的运动是(  )‎ A.匀减速运动 B.速度减小,加速度增大的运动 C.速度减小,加速度减小的运动 D.无法确定 解析:选B 木块从与弹簧接触直到弹簧被压缩到最短的过程中,木块竖直方向受到重力与支持力两个力,二力平衡。水平方向受到弹簧向左的弹力,由于弹力与速度方向相反,则木块做减速运动,随着压缩量的增大,弹力增大,由牛顿第二定律可知,加速度增大,故B正确,A、C、D错误。‎ 突破点(二) 牛顿第二定律的瞬时性问题 ‎1.两种模型 加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:‎ ‎2.求解瞬时加速度的一般思路 ⇒⇒ ‎[题点全练]‎ ‎1.[多选](2018·徐州模拟)如图所示,质量为m的小球被一根橡皮筋AC和一根绳BC系住,当小球静止时,橡皮筋处在水平方向上。下列判断中正确的是(  )‎ A.在AC被突然剪断的瞬间,BC对小球的拉力不变 B.在AC被突然剪断的瞬间,小球的加速度大小为gsin θ C.在BC被突然剪断的瞬间,小球的加速度大小为 D.在BC被突然剪断的瞬间,小球的加速度大小为gsin θ 解析:选BC 设小球静止时BC绳的拉力为F,AC橡皮筋的拉力为T,由平衡条件可得:Fcos θ=mg,Fsin θ=T,解得:F=,T=mgtan θ。在AC被突然剪断的瞬间,BC 上的拉力F也发生了突变,小球的加速度方向沿与BC垂直的方向且斜向下,大小为a==gsin θ,B正确,A错误;在BC被突然剪断的瞬间,橡皮筋AC的拉力不变,小球的合力大小与BC被剪断前拉力的大小相等,方向沿BC方向斜向下,故加速度a==,C正确,D错误。‎ ‎2.(2018·南京一模)如图所示,A、B两物块质量分别为2m、m,用一轻弹簧相连,将A用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B物块恰好与水平桌面接触而没有挤压,此时轻弹簧的伸长量为x,现将悬绳剪断,则下列说法正确的是(  )‎ A.悬绳剪断后,A物块向下运动2x时速度最大 B.悬绳剪断后,A物块向下运动3x时速度最大 C.悬绳剪断瞬间,A物块的加速度大小为2g D.悬绳剪断瞬间,A物块的加速度大小为g 解析:选B 弹簧开始处于伸长状态,弹力F=mg=kx。当向下压缩,当弹力等于重力时,速度达到最大,则有:2mg=F′=kx′,联立解得:x′=2x,所以A物块下降的距离为x+2x=3x,此时速度最大,故A错误,B正确。剪断悬绳前,对B受力分析,B受到重力和弹簧的弹力,知弹力F=mg。剪断瞬间,对A分析,A的合力为F合=2mg+F=3mg,根据牛顿第二定律,得a=1.5g,故C、D错误。‎ ‎3.[多选](2015·海南高考)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O。整个系统处于静止状态。现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g。在剪断的瞬间(  )‎ A.a1=3g          B.a1=0‎ C.Δl1=2Δl2 D.Δl1=Δl2‎ 解析:选AC 设物块的质量为m,剪断细线的瞬间,细线的拉力消失,弹簧还没有来得及改变,所以剪断细线的瞬间a受到重力和弹簧S1的拉力F1,剪断细线前对b、c和弹簧组成的整体分析,可知F1=2mg,故a受到的合力F=mg+F1=mg+2mg=3mg,故加速度a1==3g,A正确,B错误;设弹簧S2的拉力为F2,则F2=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确,D错误。‎ 突破点(三) 动力学的两类基本问题 ‎1.解决动力学两类基本问题的思路 ‎2.动力学两类基本问题的解题步骤 ‎[典例] 如图所示,航空母舰上的起飞跑道由长度为l1=1.6×102 m的水平跑道和长度为l2=20 m 的倾斜跑道两部分组成。水平跑道与倾斜跑道末端的高度差h=4.0 m。一架质量为m=2.0×104 kg的飞机,其喷气发动机的推力大小恒为F=1.2×105 N,方向与速度方向相同,在运动过程中飞机受到的平均阻力大小为飞机重力的0.1倍。假设航母处于静止状态,飞机质量视为不变并可看成质点,取g=10 m/s2。‎ ‎(1)求飞机在水平跑道运动的时间及到达倾斜跑道末端时的速度大小;‎ ‎(2)为了使飞机在倾斜跑道的末端达到起飞速度100 m/s,外界还需要在整个水平跑道对飞机施加助推力,求助推力F推的大小。‎ ‎[思路点拨]‎ ‎(1)分析飞机在水平跑道和倾斜跑道上的受力,由牛顿第二定律确定其加速度。‎ ‎(2)利用运动学公式可求出飞机在水平跑道上的运动时间及飞机到达倾斜跑道末端的速度大小。‎ ‎(3)助推力只存在于水平跑道上,飞机在倾斜跑道上的加速度不变。‎ ‎[解析] (1)飞机在水平跑道上运动时,水平方向受到推力与阻力作用,设加速度大小为a1、末速度大小为v1,运动时间为t1,有 F合=F-Ff=ma1‎ v12-v02=2a1l1‎ v1=a1t1‎ 其中v0=0,Ff=0.1mg,代入已知数据可得 a1=5.0 m/s2,v1=40 m/s,t1=8.0 s 飞机在倾斜跑道上运动时,沿倾斜跑道受到推力、阻力与重力沿倾斜跑道分力作用,设沿倾斜跑道方向的加速度大小为a2、末速度大小为v2,沿倾斜跑道方向有 F合′=F-Ff-mgsin α=ma2‎ mgsin α=mg v22-v12=2a2l2‎ 其中v1=40 m/s,代入已知数据可得 a2=3.0 m/s2,‎ v2= m/s≈41.5 m/s 故飞机在水平跑道上运动的时间为8.0 s,到达倾斜跑道末端时的速度大小为41.5 m/s。‎ ‎(2)飞机在水平跑道上运动时,水平方向受到推力、助推力与阻力作用,设加速度大小为a1′、末速度大小为v1′,有 F合″=F推+F-Ff=ma1′‎ v1′2-v02=2a1′l1‎ 飞机在倾斜跑道上运动时,沿倾斜跑道受到推力、阻力与重力沿倾斜跑道分力作用没有变化,加速度大小仍有 a2′=3.0 m/s2‎ v2′2-v1′2=2a2′l2‎ 根据题意,v2′=100 m/s,代入数据解得F推≈5.2×105 N 故助推力F推的大小为5.2×105 N。‎ ‎[答案] (1)8.0 s 41.5 m/s (2)5.2×105 N ‎[方法规律]‎ 解决动力学两类问题的两个关键点 ‎[集训冲关]‎ ‎1.[多选](2018·宿迁调研)如图所示,木盒中固定一质量为m的砝码,木盒和砝码在桌面上以一定的初速度一起以加速度a1滑行一段距离x1后停止。现拿走砝码,而持续加一个竖直向下的恒力F(F=mg),若其他条件不变,木盒以加速度a2滑行距离x2后停止。则(  )‎ A.a2>a1         B.a2=a1‎ C.x2>x1 D.x2F3‎ C.F1>F3 D.F1=F3‎ ‎[解析] 由题图可知,0~5 s内加速度a1=0.2 m/s2,方向沿斜面向下,设斜面倾角为θ,与物体之间的动摩擦力为f,根据牛顿第二定律有mgsin θ-f-F1=ma1,F1=mgsin θ-f-0.2m;5~10 s内加速度a2=0,根据牛顿第二定律有mgsin θ-f-F2=ma2,F2=mgsin θ-f;10~15 s内加速度a3=-0.2 m/s2,方向沿斜面向上,根据牛顿第二定律有mgsin θ-f-F3=ma3,F3=mgsin θ-f+0.2m。故可得:F3>F2>F1,选项A正确。‎ ‎[答案] A ‎(二)根据已知条件确定某物理量的变化图像 ‎[例2] (2018·苏州二模)如图所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上。一质量为m的小球,从离弹簧上端高h处自由下落,接触弹簧后继续向下运动。观察小球从开始下落到第一次运动至最低点的过程,下列关于小球的速度v或加速度a随时间t变化的图像中符合实际情况的是(  )‎ ‎[解析] ‎ 小球开始接触弹簧时,合力向下,向下做加速度逐渐减小的加速运动,运动到某个位置时,重力等于弹簧弹力,合力为零,加速度为零,速度最大,然后重力小于弹力,合力方向向上,向下做加速度逐渐增大的减速运动,运动到最低点时,速度为零,加速度最大,根据对称性可知,到达最低端时加速度大于g,且加速度a随时间t的变化为非线性变化,故A正确,B、C、D错误。‎ ‎[答案] A ‎(三)由Ft图像分析物体的运动情况 ‎[例3] (2018·合肥模拟)如图甲所示,质量为M=4 kg 足够长的木板静止在光滑的水平面上,在木板的中点放一个质量m=4 kg大小可以忽略的铁块,铁块与木板之间的动摩擦因数为μ=0.2,设最大静摩擦力等于滑动摩擦力。两物块开始均静止,从t=0时刻起铁块m受到水平向右、大小如图乙所示的拉力F的作用,F共作用时间为6 s,(取g=10 m/s2)则:‎ ‎(1)铁块和木板在前2 s的加速度大小分别为多少?‎ ‎(2)铁块和木板相对静止前,运动的位移大小各为多少?‎ ‎(3)力F作用的最后2 s内,铁块和木板的位移大小分别是多少?‎ ‎[解析] (1)前2 s,由牛顿第二定律得 对铁块:F-μmg=ma1解得a1=3 m/s2‎ 对木板:μmg=Ma2解得a2=2 m/s2。‎ ‎(2)2 s内,铁块的位移x1=a1t2=6 m 木板的位移x2=a2t2=4 m ‎2 s末,铁块的速度v1=a1t=6 m/s 木板的速度v2=a2t=4 m/s ‎2 s后,对铁块:F′-μmg=ma1′‎ 解得a1′=1 m/s2‎ 对木板:μmg=Ma2′‎ 解得a2′=2 m/s2‎ 设再经过t0时间铁块和木板的共同速度为v ,则 v=v1+a1′t0=v2+a2′t0‎ 解得t0=2 s,v=8 m/s 在t0内,铁块的位移 x1′=t0=×2 m=14 m 木板的位移x2′=t0=×2 m=12 m 所以铁块和木板相对静止前铁块运动的位移为 x铁块=x1+x1′=20 m 铁块和木板相对静止前木板运动的位移为 x木板=x2+x2′=16 m。‎ ‎(3)力F作用的最后2 s,铁块和木板相对静止,一起以初速度v=8 m/s 做匀加速直线运动,‎ 对铁块和木板整体:F=(M+m)a 解得a== m/s2=1.5 m/s2‎ 所以铁块和木板运动的位移均为 x3=vΔt+a(Δt)2=19 m。‎ ‎[答案] (1)3 m/s2 2 m/s2 (2)20 m 16 m ‎(3)19 m 19 m ‎1.质点从竖直圆环上沿不同的光滑弦上端由静止开始滑到环的最低点所用时间相等,如图甲所示。‎ ‎2.质点从竖直圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示。‎ ‎3.两个竖直圆环相切且两环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始滑到下端所用时间相等,如图丙所示。‎ ‎              ‎ ‎[典例] [多选]如图所示,Oa、Ob和ad是竖直平面内三根固定的光滑细杆,O、a、b、c、d位于同一圆周上,c为圆周的最高点,a为最低点,O′为圆心。每根杆上都套着一个小滑环(未画出),两个滑环从O点无初速释放,一个滑环从d点无初速释放,用t1、t2、t3‎ 分别表示滑环沿Oa、Ob、da到达a、b所用的时间,则下列关系正确的是(  )‎ A.t1=t2          B.t2>t3‎ C.t1aOb,由x=at2可知,t2>tca,故选项A错误,B、C、D均正确。‎ ‎[答案] BCD ‎[应用体验]‎ ‎1.(2018·镇江模拟)如图所示,ab、cd是竖直面内两根固定的光滑细杆,ab、cd两端位于相切的两个竖直圆周上。每根杆上都套着一个小滑环(图中未画出),两个滑环分别从a、c处释放(初速度为零),用t1、t2依次表示滑环从a到b和从c到d所用的时间,则(  )‎ A.t1>t2‎ B.t1<t2‎ C.t1=t2‎ D.t1和t2的大小以上三种情况都有可能 解析:选C 设轨道与竖直方向的夹角为θ,根据几何关系得,轨道的长度L=(2R1+2R2)cos θ,加速度:a==gcos θ,根据L=at2得,t= ,与夹角无关,则t1=t2。故C正确。‎ ‎2.(2018·东北三省三校一模)如图所示,在竖直平面内建立直角坐标系xOy,该平面内有AM、BM、CM三条光滑固定轨道,其中A、C 两点处于同一个圆上,C是圆上任意一点,A、M分别为此圆与y轴、x轴的切点。B点在y轴上且∠BMO=60°,O′为圆心。现将a、b、c三个小球分别从A、B、C点同时由静止释放,它们将沿轨道运动到M点,如所用时间分别为tA、tB、tC,则tA、tB、tC大小关系是(  )‎ A.tA3μmg时,A相对B滑动 D.无论F为何值,B的加速度不会超过μg ‎[解析] A、B间的最大静摩擦力为2μmg,B和地面之间的最大静摩擦力为μmg,对A、B整体,只要F>μmg,整体就会运动,选项A错误;当A对B的摩擦力为最大静摩擦力时,A、B将要发生相对滑动,故A、B一起运动的加速度的最大值满足2μmg-μmg=mamax,B 运动的最大加速度amax=μg,选项D正确;对A、B整体,有F-μmg=3mamax,则F>3μmg时两者会发生相对滑动,选项C正确;当F=μmg时,两者相对静止,一起滑动,加速度满足F-μmg=3ma,解得a=μg,选项B正确。‎ ‎[答案] BCD ‎[方法规律]‎ 叠加体系统临界问题的求解思路 ‎(三)运动类临界极值问题 ‎[例3] (2018·河南三市联考)如图所示,木板与水平地面间的夹角θ可以随意改变,当θ=30°时,可视为质点的一小物块恰好能沿着木板匀速下滑。若让该小物块从木板的底端以大小恒定的初速率v0=10 m/s的速度沿木板向上运动,随着θ的改变,小物块沿木板滑行的距离x将发生变化,重力加速度g取10 m/s2。‎ ‎(1)求小物块与木板间的动摩擦因数;‎ ‎(2)当θ角满足什么条件时,小物块沿木板滑行的距离最小,并求出此最小值。‎ ‎[解析] (1)当θ=30°时,小物块恰好能沿着木板匀速下滑,则mgsin θ=Ff,Ff=μmgcos θ 联立解得:μ=。‎ ‎(2)当θ变化时,设沿斜面向上为正方向,物块的加速度为a,则-mgsin θ-μmgcos θ=ma,‎ 由0-v02=2ax得x=,‎ 令cos α=,sin α=,‎ 即tan α=μ,则x=,‎ 当α+θ=90°时x最小,即θ=60°,‎ 所以x最小值为 xmin= m ‎== m。‎ ‎[答案] (1) (2)θ=60°  m ‎[方法规律]‎ 运动类临界极值问题一般是根据已知条件将物理过程用数学关系式表达出来,再借助数学知识求解临界条件和极值。‎ 连接体中力的“分配协议”‎ ‎[典例] [多选]如图所示,质量分别为mA、mB的A、B两物块用轻线连接,放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F拉A,使它们沿斜面匀加速上升,A、B与斜面间的动摩擦因数均为μ。为了增加轻线上的张力,可行的办法是(  )‎ A.减小A物块的质量   B.增大B物块的质量 C.增大倾角θ D.增大动摩擦因数μ ‎[解析] 对A、B组成的系统应用牛顿第二定律得:‎ F-(mA+mB)gsin θ-μ(mA+mB)gcos θ=(mA+mB)a,‎ 隔离物体B,应用牛顿第二定律得,‎ FT-mBgsin θ-μmBgcos θ=mBa。‎ 以上两式联立可解得:FT=,由此可知,FT的大小与θ、μ无关,mB越大,mA越小,FT越大,故A、B均正确。‎ ‎[答案] AB ‎ 如图所示,一起做加速运动的物体系统,若外力F作用于m1上,则m1和m2的相互作用力F12=,若作用于m2上,则F12=。此“协议”与有无摩擦无关(若有摩擦,两物体与接触面的动摩擦因数必须相同),与两物体间有无连接物、何种连接物(轻绳、轻杆、轻弹簧)无关,而且物体系统处于平面、斜面、竖直方向此“协议”都成立。‎ ‎[应用体验]‎ ‎1.(2018·蚌埠模拟)如图所示,A、B两物体之间用轻质弹簧连接,用水平恒力F拉A,使A、B一起沿光滑水平面做匀加速直线运动,这时弹簧长度为L1;若将A、B置于粗糙水平面上,用相同的水平恒力F拉A,使A、B一起做匀加速直线运动,此时弹簧长度为L2。若A、B与粗糙水平面之间的动摩擦因数相同,则下列关系式正确的是(  )‎ A.L2=L1‎ B.L2<L1‎ C.L2>L1‎ D.由于A、B质量关系未知,故无法确定L1、L2的大小关系 解析:选A 水平面光滑时,用水平恒力F拉A时,由牛顿第二定律得,对整体有 F=(mA+mB)a,对B有 F1=mBa=;水平面粗糙时,对整体有 F-μ(mA+mB)g=(mA+mB)a,对B有 F2-μmBg=mBa,解以上两式得F2=,可知F1=F2,故L1=L2,故A正确。‎ ‎2.a、b两物体的质量分别为m1、m2,由轻质弹簧相连。当用恒力F竖直向上拉着a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x1;当用大小仍为F的恒力沿水平方向拉着a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x2,如图所示,则(  )‎ A.x1一定等于x2       B.x1一定大于x2‎ C.若m1>m2,则x1>x2 D.若m120 N时,根据牛顿第二定律:‎ F-f=ma,得a=-+ 则由数学知识知图像的斜率k= 由图得k==,可得物体的质量为5 kg。‎ 将F=20 N时a=1 m/s2,代入F-f=ma得:‎ 物体受到的摩擦力f=15 N 由f=μFN=μmg可得物体的动摩擦因数μ,故A、B、C正确。‎ 因为图像只给出作用力与加速度的对应关系,且物体做加速度逐渐增大的加速运动,因没有时间,故无法算得物体的加速度为2 m/s2时物体的速度,故D错误。‎ ‎11.(2018·百校联盟冲刺金卷)如图所示,物块A、B叠放在一起,其中B与斜面间的动摩擦因数μ<tan θ,A、B整体相对静止以一定的初速度沿固定的足够长的斜面上滑,则下列说法正确的是(  )‎ A.上滑的过程A、B整体处于失重状态 B.上滑到最高点后A、B整体将停止运动 C.A与B之间的摩擦力在上滑过程中大于下滑过程 D.A与B之间的摩擦力在上滑与下滑过程中大小相等 解析:选AD 在上升和下滑的过程,整体都是只受三个力,重力、支持力和摩擦力,以向下为正方向,根据牛顿第二定律得向上运动的过程中:‎ ‎(mA+mB)gsin θ+f=(mA+mB)a,‎ f=μ(mA+mB)gcos θ 因此有:a=gsin θ+μgcos θ,方向沿斜面向下,所以向上运动的过程中A、B组成的整体处于失重状态,故A正确。‎ 同理对整体进行受力分析,向下运动的过程中,由牛顿第二定律得:‎ ‎(mA+mB)gsin θ-f=(mA+mB)a′,‎ 得:a′=gsin θ-μgcos θ 由于μ<tan θ,所以a′>0‎ 所以上滑到最高点后A、B整体将向下运动,故B错误;‎ 以B为研究对象,向上运动的过程中,根据牛顿第二定律有:‎ mBgsin θ+f′=mBa,‎ 解得:f′=μmBgcos θ;‎ 向下运动的过程中,根据牛顿第二定律有:‎ mBgsin θ-f″=mBa′,‎ 解得:f″=μmBgcos θ;‎ 所以f″=f′,即A与B之间的摩擦力上滑与下滑过程中大小相等,故C错误,D正确。‎ ‎12.(2018·儋州四校联考)如图所示为儿童乐园里一项游乐活动的示意图,金属导轨倾斜固定,倾角为α,导轨上开有一狭槽,内置一小球,球可沿槽无摩擦滑动,绳子一端与球相连,另一端连接一抱枕,小孩可抱住抱枕与之一起下滑,绳与竖直方向夹角为β,且保持不变。假设抱枕质量为m1,小孩质量为m2,小球、绳的质量及空气阻力忽略不计,则下列说法正确的是(  )‎ A.分析可知α=β B.小孩与抱枕一起做匀速直线运动 C.小孩对抱枕的作用力平行导轨方向向下 D.绳子拉力与抱枕对小孩的作用力之比为(m1+m2)∶m2‎ 解析:选AD 由于球沿斜槽无摩擦滑动,则小孩、抱枕和小球组成的系统具有相同的加速度,且a=gsin α,做匀加速直线运动,隔离对小孩和抱枕分析,加速度a=gsin α=gsin β,则α=β,故A正确,B错误。对抱枕分析,受重力、绳子拉力、小孩对抱枕的作用力,因为沿绳子方向合力为零,平行导轨方向的合力为m1a=m1gsin β,可知小孩对抱枕的作用力与绳子在同一条直线上,故C错误。对小孩和抱枕整体分析,根据平行四边形定则知,绳子的拉力T=(m1+m2)gcos β,抱枕对小孩的作用力方向沿绳子方向向上,大小为m2gcos β,则绳子拉力与抱枕对小孩的作用力之比为(m1+m2)∶m2,故D正确。‎ 三、实验题(本题共2小题,共18分)‎ ‎13.(6分)(2018·武汉华中师大一附中模拟)在“探究小车速度随时间变化的规律”实验中,测得纸带上计数点的情况如图所示,A、B、C、D、E为选好的计数点,在相邻的两个计数点之间还有4个点未标出,图中数据的单位是cm,实验中使用的电源频率为50 Hz。由此可知:小车的加速度a=________m/s2;打点计时器打下C点时,小车的瞬时速度vC=__________m/s。(结果保留两位有效数字)‎ 解析:每相邻的两计数点间都有四个点未画出,因此计数点之间的时间间隔为T=0.1 s;‎ 根据Δx=aT2,可得a=;‎ 代入数据,解得 a=×10-2 m/s2≈0.34 m/s2。‎ 根据匀变速直线运动中,中间时刻的速度等于该过程中的平均速度,有:‎ vC==×10-2 m/s≈0.44 m/s。‎ 答案:0.34 0.44‎ ‎14.(12分)(2018·河北正定中学检测)为了研究人们用绳索跨山谷过程中绳索拉力的变化规律,同学们设计了如图(a)所示的实验装置,他们将不可伸长轻绳的两端通过测力计(不计质量及长度)固定在相距为D的两立柱上,固定点分别为M和N,M低于N,绳长为L(L>D)。他们首先在轻绳上距离M点10 cm处(标记为C)系上质量为m的重物(不滑动),由测力计读出轻绳MC、NC的拉力大小TM和TN,随后改变重物悬挂点的位置,每次将M到C点的距离增加10 cm,并读出测力计的示数,最后得到TM、TN与轻绳MC长度之间的关系曲线如图所示,由实验可知:‎ ‎(1)曲线Ⅰ中拉力最大时,C与M点的距离为________cm,该曲线为________(选填:TM或TN)的曲线。‎ ‎(2)若用一个光滑的挂钩将该重物挂于轻绳上,待稳定后,左端测力计上的示数为________N,MC与水平方向的夹角为________(用正弦值表示)(第2问结果均保留两位有效数字)。‎ 解析:(1)由题图(b)可知,曲线Ⅰ中拉力最大时,C与M点的距离为100 cm。选取C为研究的对象,受力如图,‎ 水平方向:TMsin α=TNsin β,竖直方向:TMcos α+TNcos β=G,由图可得,当α=β时,两轻绳上的拉力相等,该处离M比较近。C到M与N的距离相等时,受力如图:‎ 水平方向仍然满足:TMsin α=TNsin β 由图可得α>β,所以:TM
查看更多

相关文章