【物理】2018届一轮复习人教版 机械能守恒定律及其应用 学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【物理】2018届一轮复习人教版 机械能守恒定律及其应用 学案

第29课时 机械能守恒定律及其应用(重点突破课)‎ ‎[必备知识]‎ ‎1.重力做功的特点 重力做功与路径无关,只与始、末位置的高度差有关。‎ ‎2.重力势能的特点 重力势能是物体和地球组成的系统所共有的;重力势能的大小与参考平面的选取有关,但重力势能的变化与参考平面的选取无关。‎ ‎3.重力做功与重力势能变化的关系 ‎(1)定性关系:重力对物体做正功,重力势能减小;重力对物体做负功,重力势能增大。‎ ‎(2)定量关系:重力对物体做的功等于物体重力势能变化量的负值,即WG=-ΔEp。‎ ‎4.弹性势能 ‎(1)概念:物体由于发生弹性形变而具有的能量。‎ ‎(2)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大。‎ ‎(3)弹力做功与弹性势能变化的关系:弹力对物体做的功等于弹簧弹性势能变化量的负值,即W=-ΔEp,类似于重力做功与重力势能变化的关系。‎ ‎5.机械能守恒定律 ‎(1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。‎ ‎(2)守恒条件:只有重力或系统内弹力做功。‎ ‎(3)常用的三种表达式 ‎①守恒式:E1=E2或Ek1+Ep1=Ek2+Ep2;‎ ‎②转化式:ΔEk=-ΔEp;‎ ‎③转移式:ΔEA=-ΔEB。‎ ‎[小题热身]‎ ‎1.判断正误 ‎(1)重力势能的大小与零势能参考面的选取有关。(√)‎ ‎(2)重力势能的变化与零势能参考面的选取无关。(√)‎ ‎(3)被举到高处的物体重力势能一定不为零。(×)‎ ‎(4)物体的速度增大时,其机械能可能在减小。(√)‎ ‎(5)物体所受的合外力为零,物体的机械能一定守恒。(×)‎ ‎(6)物体受到摩擦力作用时,机械能一定要变化。(×)‎ ‎2.关于重力势能,下列说法中正确的是(   )‎ A.物体的位置一旦确定,它的重力势能的大小也随之确定 B.物体与零势能面的距离越大,它的重力势能也越大 C.一个物体的重力势能从-5 J变化到-3 J,重力势能减少了 D.重力势能的减少量等于重力对物体做的功 解析:选D 物体的重力势能与参考面有关,同一物体在同一位置相对不同的参考面时,重力势能不同,A选项错;物体在零势能面以上,距零势能面的距离越大,重力势能越大,物体在零势能面以下,距零势能面的距离越大,重力势能越小,B选项错;重力势能中的正、 负号表示大小,-5 J的重力势能小于-3 J的重力势能,C选项错;重力做的功度量了重力势能的变化,D选项正确。‎ ‎3.将质量为‎100 kg的物体从地面提升到‎10 m高处,在这个过程中,下列说法中正确的是(取g=‎10 m/s2)(   )‎ A.重力做正功,重力势能增加1.0×104 J B.重力做正功,重力势能减少1.0×104 J C.重力做负功,重力势能增加1.0×104 J D.重力做负功,重力势能减少1.0×104 J 解析:选C 重力做负功,WG=-mgh=-1.0×104 J,ΔEp=-WG=1.0×104 J,C项正确。‎ ‎4.(多选)如图所示,A、B两球质量相等,A球用不能伸长的轻绳系于O点,B球用轻弹簧系于O′点,O与O′点在同一水平面上,分别将A、B球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球达到各自悬点的正下方时,两球仍处在同一水平面上,则(   )‎ A.两球到达各自悬点的正下方时,两球动能相等 B.两球到达各自悬点的正下方时,A球动能较大 C.两球到达各自悬点的正下方时,B球动能较大 D.两球到达各自悬点的正下方时,A球受到向上的拉力较大 解析:选BD 整个过程中两球减少的重力势能相等,A球减少的重力势能完全转化为A球的动能,B球减少的重力势能转化为B球的动能和弹簧的弹性势能,所以A球的动能大于B球的动能,所以B正确;在悬点正下方位置,根据牛顿第二定律知F=mg+,因为vA>vB,所以A球受到的拉力较大,所以D正确。‎ 提能点(一) 机械能守恒的理解与判断 ‎1.对机械能守恒条件的理解 ‎(1)只受重力作用,例如做平抛运动的物体机械能守恒。‎ ‎(2)除重力外,物体还受其他力,但其他力不做功或做功代数和为零。‎ ‎(3)除重力外,只有系统内的弹力做功,并且弹力做的功等于弹性势能减少量,那么系统的机械能守恒。注意:并非物体的机械能守恒,如与弹簧相连的小球下摆的过程机械能减少。‎ ‎2.机械能是否守恒的三种判断方法 ‎(1)利用做功即守恒条件判断。‎ ‎(2)利用机械能的定义判断:若物体或系统的动能、势能之和保持不变,则机械能守恒。‎ ‎(3)利用能量转化判断:若物体或系统与外界没有能量交换,内部也没有机械能与其他形式能的转化,则机械能守恒。‎ ‎[典例]  (多选)如图所示,下列关于机械能是否守恒的判断正确的是(   )‎ A.甲图中,物体A将弹簧压缩的过程中,物体A机械能守恒 B.乙图中,物体A固定,物体B沿斜面匀速下滑,物体B的机械能守恒 C.丙图中,不计任何阻力和定滑轮质量时,A加速下落,B加速上升过程中,A、B组成的系统机械能守恒 D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒 ‎[解析] 甲图中重力和弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A机械能不守恒,A错;乙图中物体B除受重力外,还受到弹力和摩擦力作用,弹力不做功,但摩擦力做负功,物体B的机械能不守恒,B错;丙图中绳子张力对A做负功,对B做正功,代数和为零,A、B组成的系统机械能守恒,C对;丁图中小球的动能不变,势能不变,机械能守恒,D对。‎ ‎[答案] CD ‎(1)机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;“只有重力或弹力做功”不等于“只受重力或弹力作用”。‎ ‎(2)对于一些绳子突然绷紧、物体间碰撞等情况,除非题目特别说明,否则机械能必定不守恒。‎ ‎(3)对于系统机械能是否守恒,可以根据能量的转化进行判断。‎ ‎[集训冲关]‎ ‎1.在如图所示的物理过程示意图中,甲图一端固定有小球的轻杆,从右偏上30°角释放后绕光滑支点摆动;乙图为末端固定有小球的轻质直角架,释放后绕通过直角顶点的固定轴O无摩擦转动;丙图为轻绳一端连着一小球,从右偏上30°角处自由释放;丁图为置于光滑水平面上的带有竖直支架的小车,把用细绳悬挂的小球从图示位置释放,小球开始摆动,则关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是(   )‎ A.甲图中小球机械能守恒 B.乙图中小球A机械能守恒 C.丙图中小球机械能守恒 D.丁图中小球机械能守恒 解析:选A 甲图过程中轻杆对小球不做功,小球的机械能守恒,A正确;乙图过程中轻杆对A的弹力不沿杆的方向,会对小球做功,所以小球A的机械能不守恒,但两个小球组成的系统机械能守恒,B错误;丙图中小球在绳子绷紧的瞬间有动能损失,机械能不守恒,C错误;丁图中小球和小车组成的系统机械能守恒,但小球的机械能不守恒,这是因为摆动过程中小球的轨迹不是圆弧,细绳会对小球做功,D错误。‎ ‎2.把小球放在竖立的弹簧上,并把球往下按至A位置,如图甲所示。迅速松手后,球升高至最高位置C(图丙),途中经过位置B时弹簧正处于原长(图乙)。忽略弹簧的质量和空气阻力。则小球从A运动到C的过程中,下列说法正确的是(   )‎ A.经过位置B时小球的加速度为0‎ B.经过位置B时小球的速度最大 C.小球、地球、弹簧所组成系统的机械能守恒 D.小球、地球、弹簧所组成系统的机械能先增大后减小 解析:选C 分析小球从A到B的过程中受力情况,开始时弹力大于重力,中间某一位置弹力和重力相等,接着弹力小于重力,在B点时,弹力为零,小球从B到C的过程中,只受重力。根据牛顿第二定律可以知道小球从A到B过程中,先向上加速再向上减速,所以速度最大位置应该是加速度为零的位置,在A、B之间某一位置,A、B错;从A到C 过程中对于小球、地球、弹簧组成的系统只有重力和弹力做功,所以系统的机械能守恒,C对,D错。‎ ‎3.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与一橡皮绳相连,橡皮绳的另一端固定在地面上的A点,橡皮绳竖直时处于原长h。让圆环沿杆滑下,滑到杆的底端时速度为零。则在圆环下滑过程中(   )‎ A.圆环机械能守恒 B.橡皮绳的弹性势能一直增大 C.橡皮绳的弹性势能增加了mgh D.橡皮绳再次达到原长时圆环动能最大 解析:选C 圆环沿杆滑下,滑到杆的底端的过程中有两个力对圆环做功,即环的重力和橡皮绳的拉力,所以圆环的机械能不守恒,如果把圆环和橡皮绳组成的系统作为研究对象,则系统的机械能守恒,故A错误;橡皮绳的弹性势能随橡皮绳的形变量的变化而变化,由题图知橡皮绳先缩短后再伸长,故橡皮绳的弹性势能先不变再增大,故B错误;根据系统的机械能守恒,圆环的机械能减少了mgh,那么圆环的机械能的减少量等于橡皮绳的弹性势能增大量,为mgh,故C正确;在圆环下滑过程中,橡皮绳再次达到原长时,该过程中圆环的动能一直增大,但不是最大,沿杆方向合力为零的时刻,圆环的动能最大,故D错误。‎ 提能点(二) 单个物体的机械能守恒 应用机械能守恒定律的一般步骤 ‎[典例] 如图所示,竖直平面内的一半径R=‎0.50 m的光滑圆弧槽BCD,B点与圆心O等高,一水平面与圆弧槽相接于D点,质量m=‎0.10 kg的小球从B点正上方H=‎0.95 m高处的A点自由下落,由B点进入圆弧轨道,从D点飞出后落在水平面上的Q点,DQ间的距离x=‎2.4 m,球从D点飞出后的运动过程中相对水平面上升的最大高度h=‎0.80 m,g取‎10 m/s2,不计空气阻力,求:‎ ‎(1)小球经过C点时轨道对它的支持力大小FN;‎ ‎(2)小球经过最高点P的速度大小vP;‎ ‎(3)D点与圆心O的高度差hOD。‎ ‎[解析] (1)设小球经过C点时速度为v1,取C点为零势能面,由机械能守恒有 mg(H+R)=mv12‎ 由牛顿第二定律有FN-mg= 代入数据解得FN=6.8 N。‎ ‎(2)小球从P到Q做平抛运动,有 h=gt2‎ =vPt 代入数据解得vP=‎3.0 m/s。‎ ‎(3)取DQ为零势能面,由机械能守恒定律,有 mvP2+mgh=mg(H+hOD),‎ 代入数据,解得hOD=‎0.30 m。‎ ‎[答案] (1)6.8 N (2)‎3.0 m/s (3)‎‎0.30 m 机械能守恒定律的应用技巧 ‎(1)机械能守恒定律是一种“能—能转化”关系,其守恒是有条件的,因此,应用时首先要对研究对象在所研究的过程中机械能是否守恒做出判断。‎ ‎(2)如果系统(除地球外)只有一个物体,用守恒式列方程较方便;对于由两个或两个以上物体组成的系统,用转化式或转移式列方程较简便。‎ ‎[集训冲关]‎ ‎1.(多选)如图所示,在地面上以速度v0抛出质量为m的物体,抛出后物体落在比地面低h的海平面上,若以地面为零势能面,且不计空气阻力,则(   )‎ A.物体在海平面的重力势能为mgh B.重力对物体做的功为mgh C.物体在海平面上的机械能为mv02+mgh D.物体在海平面上的动能为mv02+mgh 解析:选BD 以地面为零势能面,海平面在地面以下h处,所以物体在海平面的重力势能是-mgh,A错;重力做功和路径无关,和初、末位置高度差有关,从地面到海平面,位移竖直向下为h,重力也向下,重力对物体做功mgh,B对;从地面到海平面过程只有重力做功,机械能守恒,在海平面处的机械能等于在地面的机械能,在地面重力势能为零,动能为mv02,机械能为E=0+mv02=mv02,C错;在海平面处的机械能同样为mv02,而在海平面重力势能为-mgh,所以mv02=Ek+(-mgh),得动能Ek=mv02+mgh,D对。‎ ‎2.如图所示,质量为m的小球从四分之一光滑圆弧轨道顶端由静止释放,从轨道末端O点水平抛出,击中平台右下侧挡板上的P点。以O为原点在竖直面内建立如图所示的平面直角坐标系,挡板形状满足方程y=6-x2(单位:m),小球质量m=‎0.4 kg,圆弧轨道半径R=‎1.25 m,g取‎10 m/s2,求:‎ ‎(1)小球对圆弧轨道末端的压力大小;‎ ‎(2)小球从O点到P点所需的时间(结果可保留根号)。‎ 解析:(1)对小球,从释放到O点过程中由机械能守恒得 mgR=mv2‎ 代入数据解得v=‎5 m/s 小球在圆轨道最低点有FN-mg=m 解得FN=12 N 根据牛顿第三定律,小球对轨道末端的压力大小 FN′=FN=12 N。‎ ‎(2)小球从O点水平抛出后满足y=gt2‎ x=vt 又有y=6-x2‎ 联立解得t= s。‎ 答案:(1)12 N (2) s 提能点(三) 多个物体的机械能守恒 考法1 杆连物体系统机械能守恒 ‎ 问 题 简 述 如图所示的两物体组成的系统,当释放后A、B在竖直平面内绕过O点的轴转动,且A、B的角速度相等。‎ 方 法 突 破 求解这类问题时,由于二者角速度相等,所以关键是根据二者转动半径的关系寻找两物体的线速度的关系,根据两物体间的位移关系,寻找到系统重力势能的变化,最后根据ΔEk=-ΔEp列出机械能守恒的方程求解。另外注意的是轻杆对物体提供的弹力不一定沿着杆,轻杆的弹力也就不一定与速度方向垂直,轻杆的弹力对一个物体做了正功,就对另一物体做了负功,并且绝对值相等。‎ ‎[例1] (多选)(2015·全国卷Ⅱ)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上。a、b通过铰链用刚性轻杆连接,由静止开始运动。不计摩擦,a、b可视为质点,重力加速度大小为g。则(  )‎ A.a落地前,轻杆对b一直做正功 B.a落地时速度大小为 C.a下落过程中,其加速度大小始终不大于g D.a落地前,当a的机械能最小时,b对地面的压力大小为mg ‎[解析] 由题意知,系统机械能守恒。设某时刻a、b的速度分别为va、vb。此时刚性轻杆与竖直杆的夹角为θ,分别将va、vb分解,如图。因为刚性杆不可伸长,所以沿杆的分速度v∥与v∥′是相等的,即vacos θ=vb sin θ。当a滑至地面时θ=90°,此时vb=0,由系统机械能守恒得mgh=mva2,解得va=,选项B正确。同时由于b初、末速度均为零,运动过程中其动能先增大后减小,即杆对b先做正功后做负功,选项A错误。杆对b的作用先是推力后是拉力,对a则先是阻力后是动力,即a的加速度在受到杆的向下的拉力作用时大于g,选项C错误。b的动能最大时,杆对a、b的作用力为零,此时a的机械能最小,b只受重力和支持力,所以b对地面的压力大小为mg,选项D正确。‎ ‎[答案] BD 考法2 绳连物体系统机械能守恒 ‎ 问题简述 如图所示的两物体组成的系统,当释放B而使A、B运动的过程中,A、B的速度均沿绳子方向,在相等时间内A、B运动的路程相等,A、B的速率也相等。但有些问题中两物体的速率并不相等,这时就需要先进行运动的合成与分解找出两物体运动速度之间的关系。‎ 方法突破 求解这类问题时,由于二者速率相等或相关,所以关键是寻找两物体间的位移关系,进而找到系统重力势能的变化。列机械能守恒方程时,一般选用ΔEk=-ΔEp的形式。另外注意系统机械能守恒并非每个物体机械能守恒,因为细绳对系统中的每一个物体都要做功。‎ ‎[例2] (2017·济南质检)如图所示,跨过同一高度处的定滑轮的细线连接着质量相同的物体A和B,A套在光滑水平杆上,定滑轮离水平杆的高度h=‎0.2 m,开始时让连着A的细线与水平杆的夹角θ1=37°,由静止释放B,当细线与水平杆的夹角θ2=53°时,A的速度为多大?在以后的运动过程中,A所获得的最大速度为多大?(设B不会碰到水平杆,sin 37°=0.6,sin 53°=0.8,取g=‎10 m/s2)‎ ‎[解析] A、B两物体组成的系统,只有动能和重力势能的转化,机械能守恒。设θ2=53°时,A、B两物体的速度分别为vA、vB,B下降的高度为h1,则有mgh1=mvA2+mvB2‎ 其中h1=- vAcos θ2=vB 代入数据解得vA≈‎1.1 m/s。‎ 由于绳子的拉力对A做正功,使A加速,至左滑轮正下方时速度最大,此时B的速度为零,此过程B下降高度设为h2,则由机械能守恒定律得mgh2=mvAm2‎ 其中h2=-h 代入数据解得vAm≈‎1.6 m/s。‎ ‎[答案] ‎1.1 m/s ‎1.6 m/s 考法3 弹簧连接的系统机械能守恒 ‎ 问题简述 由弹簧相连的物体系统,在运动过程中既有重力做功又有弹簧弹力做功,这时系统内物体的动能、重力势能和弹簧弹性势能相互转化或转移,而总的机械能守恒。‎ 方法突破 求解这类问题时,首先以弹簧遵循的胡克定律为分析问题的突破口:弹簧伸长或缩短时产生的弹力的大小遵循F=kx和ΔF=kΔx。其次,以弹簧的弹力做功为分析问题的突破口:弹簧发生形变时,具有一定的弹性势能。弹簧的弹性势能与弹簧的劲度系数、形变量有关,但是在具体的问题中不用计算弹性势能的大小,弹簧的形变量相同的时候弹性势能相同,通过运算可以约去。当题目中始、末都不是弹簧原长时,要注意始、末弹力的大小与方向时刻要与当时的形变相对应,即伸长量或压缩量,而力的位移就可能是两次形变量之和或之差。‎ ‎[例3] 如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上。现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行。已知A的质量为‎4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计。开始时整个系统处于静止状态;释放A后,A沿斜面下滑至速度最大时,C恰好离开地面。求:‎ ‎(1)斜面的倾角α。‎ ‎(2)球A获得的最大速度vm。‎ ‎[解析] (1)由题意可知,当A沿斜面下滑至速度最大时,C恰好离开地面。物体A的加速度此时为零 由牛顿第二定律:4mgsin α-2mg=0‎ 则:sin α=,即α=30°。‎ ‎(2)由题意可知,A、B两小球及轻质弹簧组成的系统在初始时和A沿斜面下滑至速度最大时的机械能守恒,同时弹簧的弹性势能相等,故有:2mg=kΔx ‎4mgΔxsin α-mgΔx=(‎5m)vm2‎ 得:vm=‎2g 。‎ ‎[答案] (1)30° (2)‎2g ‎[通法归纳]‎ ‎  (1)对多个物体组成的系统要注意判断物体运动过程中,系统的机械能是否守恒。‎ ‎(2)注意寻找用绳或杆或弹簧相连接的物体间的速度关系和位移关系。‎ ‎(3)列机械能守恒方程时,一般选用ΔEk=-ΔEp或ΔEA=-ΔEB的形式。‎ ‎[集训冲关]‎ ‎1. (2015·天津高考)如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为‎2L(未超过弹性限度),则在圆环下滑到最大距离的过程中(  )‎ A.圆环的机械能守恒 B.弹簧弹性势能变化了mgL C.圆环下滑到最大距离时,所受合力为零 D.圆环重力势能与弹簧弹性势能之和保持不变 解析:选B 圆环沿杆下滑的过程中,圆环与弹簧组成的系统动能、弹性势能、重力势能之和守恒,选项A、D错误;弹簧长度为‎2L时,圆环下落的高度h=L,根据机械能守恒定律,弹簧的弹性势能增加了ΔEp=mgh=mgL,选项B正确;圆环释放后,圆环向下先做加速运动,后做减速运动,当速度最大时,合力为零,下滑到最大距离时,具有向上的加速度,合力不为零,选项C错误。‎ ‎2.(2017·青岛检测)一半径为R的半圆形竖直圆柱面,用轻质不可伸长的细绳连接的A、B两球悬挂在圆柱面边缘两侧,A球质量为B球质量的2倍,现将A球从圆柱边缘处由静止释放,如图所示。已知A球始终不离开圆柱内表面,且细绳足够长,若不计一切摩擦,求:‎ ‎(1)A球沿圆柱内表面滑至最低点时速度的大小;‎ ‎(2)A球沿圆柱内表面运动的最大位移。‎ 解析:(1)设A球沿圆柱内表面滑至最低点时速度的大小为v,B球的质量为m,‎ 则根据机械能守恒定律有 ‎2mgR-mgR=×2mv2+mvB2‎ 由图甲可知,A球的速度v与B球速度vB的关系为 vB=v1=vcos 45°‎ 联立解得v=2 。‎ ‎(2)当A球的速度为零时,A球沿圆柱内表面运动的位移最大,设为x,如图乙所示,‎ 由几何关系可知A球下降的高度 h= 根据机械能守恒定律,‎ 有2mgh-mgx=0‎ 解得x=R。‎ 答案:(1)2  (2)R ‎3.(2017·济南模拟)半径为R的光滑圆环竖直放置,环上套有两个质量分别为m和m的小球A和B。A、B之间用一长为R的轻杆相连,如图所示。开始时,A、B都静止,且A在圆环的最高点,现将A、B释放,试求:‎ ‎(1)B球到达最低点时的速度大小;‎ ‎(2)B球到达最低点的过程中,杆对A球做的功;‎ ‎(3)B球在圆环右侧区域内能达到的最高点位置。‎ 解析:(1)释放后B到达最低点的过程中A、B和杆组成的系统机械能守恒,‎ mAgR+mBgR=mAvA2+mBvB2,‎ 又OA⊥OB,AB杆长=R,故OA、OB与杆间夹角均为45°,可得vA=vB,‎ 解得:vB= 。‎ ‎(2)对小球A应用动能定理可得:‎ W杆A+mAgR=mAvA2,‎ 又vA=vB 解得杆对A球做功W杆A=0。‎ ‎(3)设B球到达右侧最高点时,OB与竖直方向之间的夹角为θ,取圆环的圆心O为零势面,‎ 由系统机械能守恒可得:‎ mAgR=mBgRcos θ-mAgRsin θ,‎ 代入数据可得θ=30°,‎ 所以B球在圆环右侧区域内达到最高点时,高于圆心O的高度 hB=Rcos θ=R。‎ 答案:(1) (2)0 (3)高于O点R处 提能点(四) 用机械能守恒定律解决非质点问题 在应用机械能守恒定律处理实际问题时,经常遇到像“链条”“液柱”类的物体,其在运动过程中将发生形变,其重心位置相对物体也发生变化,因此这类物体不能再看成质点来处理。‎ 物体虽然不能看成质点来处理,但因只有重力做功,物体整体机械能守恒。一般情况下,可将物体分段处理,确定质量分布均匀的规则物体各部分的重心位置,根据初、末状态物体重力势能的变化列式求解。‎ ‎[典例] 如图所示,AB为光滑的水平面,BC是倾角为α的足够长的光滑斜面,斜面体固定不动。AB、BC间用一小段光滑圆弧轨道相连。一条长为L的均匀柔软链条开始时静止的放在ABC面上,其一端D至B的距离为L-a。现自由释放链条,则:‎ ‎(1)链条下滑过程中,系统的机械能是否守恒?简述理由;‎ ‎(2)链条的D端滑到B点时,链条的速率为多大?‎ ‎[解析] (1)链条在下滑过程中机械能守恒,因为斜面BC和AB面均光滑,链条下滑时只有重力做功,符合机械能守恒的条件。‎ ‎(2)设链条质量为m,可以认为始、末状态的重力势能变化是由L-a段下降引起的,‎ 高度减少量h=sin α=sin α 该部分的质量为m′=(L-a)‎ 由机械能守恒定律可得:(L-a)gh=mv2,‎ 可解得:v= 。‎ ‎[答案] (1)见解析 (2) ‎(1)寻找等效长度,如本例中的“L-a”,可以快速准确的解决非质点问题。‎ ‎(2)重力势能的变化或重力做功利用等效长度来表示,但动能的表达式一般要针对整体。‎ ‎(3)机械能守恒定律解决非质点问题,犹如整体隔离法解决动力学问题。‎ ‎[集训冲关]‎ ‎1.如图所示,粗细均匀,两端开口的U形管内装有同种液体,开始时两边液面高度差为h,管中液柱总长度为4h,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度为(   )‎ A.            B. C. D. 解析:选A 当两液面高度相等时,减少的重力势能转化为整个液体的动能,根据功能关系有mg·h=mv2,解得:v= 。‎ ‎2.如图所示,露天娱乐场空中列车是由许多节完全相同的车厢组成,列车先沿光滑水平轨道行驶,然后滑上一固定的半径为R的空中圆形光滑轨道,若列车全长为L(L>2πR),R远大于一节车厢的长度和高度,那么列车在运行到圆环轨道前的速度至少要多大,才能使整个列车安全通过固定的圆环轨道(车厢间的距离不计)。‎ 解析:当列车进入轨道后,动能逐渐向势能转化,车速逐渐减小,当车厢占满圆环时的速度最小,设此时的速度为v,列车的质量为M,‎ 轨道上那部分列车的质量M′=·2πR 由机械能守恒定律可得:Mv02=Mv2+M′gR 又因圆环顶部车厢应满足:mg=m,‎ 可求得:v0= 。‎ 答案: 一、单项选择题 ‎1.如图所示,斜面体置于光滑水平地面上,其光滑斜面上有一物体由静止沿斜面下滑,在物体下滑过程中,下列说法正确的是(   )‎ A.物体的重力势能减少,动能不变 B.斜面体的机械能不变 C.斜面对物体的作用力垂直于接触面,不对物体做功 D.物体和斜面体组成的系统机械能守恒 解析:选D 物体由静止开始下滑的过程其重力势能减少,动能增加,A错误;物体在下滑过程中,斜面体做加速运动,其机械能增加,B错误;物体沿斜面下滑时,既沿斜面向下运动,又随斜面向右运动,其合速度方向与弹力方向不垂直,弹力方向垂直于接触面,但与速度方向之间的夹角大于90°,所以斜面对物体的作用力对物体做负功,C错误;对物体与斜面体组成的系统,只有物体的重力和物体与斜面间的弹力做功,机械能守恒,D正确。‎ ‎2.(2017·长沙质检)如图所示为某跳水运动员自离开跳板开始计时的速度与时间关系图像,假设空气阻力忽略不计,根据图像可知(   )‎ A.t2时刻运动员到达起跳的最高点 B.t2~t3时间内,运动员处于失重状态 C.0~t3时间内,运动员机械能守恒 D.0~t3时间内,合力对运动员做负功 解析:选D 由题图知,在t1时刻速度为零,运动员到达最高点,A错误;t2~t3时间内,运动员向下做减速运动,处于超重状态,B错误;在t2~t3时间内,水的阻力对运动员做负功,运动员机械能不守恒,C错误;在0~t3内由动能定理知,W合<0,D正确。‎ ‎3.如图所示,用长为L的轻绳把一个小铁球悬挂在高为‎2L的O点处,小铁球以O点为圆心在竖直平面内做圆周运动且恰能到达最高点B处,不计空气阻力。若运动中轻绳断开,则小铁球落到地面时的速度大小为(   )‎ A.         B. C. D. 解析:选D 小铁球恰能到达最高点B,则小铁球在最高点处的速度v=。以地面为零势能面,小铁球在B点处的总机械能为mg×‎3L+mv2=mgL,无论轻绳是在何处断的,小铁球的机械能总是守恒的,因此到达地面时的动能mv2=mgL,故小铁球落到地面的速度v′=,D正确。‎ ‎4.如图所示,长为L 的均匀链条放在光滑水平桌面上,且使长度的垂在桌边,松手后链条从静止开始沿桌边下滑,则链条滑至刚刚离开桌边时的速度大小为(   )‎ A. B. ‎ C. D.4 解析:选C 由机械能守恒定律ΔEp减=ΔEk增,即mg·-mg·=mv2,所以v=。‎ ‎5.有一竖直放置的“T”形架,表面光滑,滑块A、B分别套在水平杆与竖直杆上,A、B用一根不可伸长的轻细绳相连,A、B质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A、B静止。由静止释放B后,已知当细绳与竖直方向的夹角为60°时,滑块B沿着竖直杆下滑的速度为v,则连接A、B的绳长为(   )‎ A. B. C. D. 解析:选D 由运动的合成与分解可知滑块A和B沿绳伸长方向的速度大小相等,有vAsin 60°=vcos 60°,解得vA=v,滑块A、B组成的系统机械能守恒,设滑块B下滑的高度为h,有mgh=mvA2+mv2,解得h=,由几何关系可知绳长L=2h=,故选项D正确。‎ 二、多项选择题 ‎6.(2017·常德质检)重10 N的滑块在倾角为30°的光滑斜面上,从a点由静止下滑,到b点接触到一个轻弹簧,滑块压缩弹簧到c点开始弹回,返回b点离开弹簧,最后又回到a点,已知ab=‎1 m,bc=‎0.2 m,那么在整个过程中(   )‎ A.滑块动能的最大值是6 J B.弹簧弹性势能的最大值是6 J C.从c到b弹簧的弹力对滑块做的功是6 J D.整个过程系统机械能守恒 解析:选BCD 以滑块和弹簧为系统,在滑块的整个运动过程中,只发生动能、重力势能和弹性势能之间的相互转化,系统机械能守恒,D正确;滑块从a到c重力势能减小了 mgacsin 30°=6 J,全部转化为弹簧的弹性势能,A错误,B正确;从c到b弹簧恢复原长,通过弹簧的弹力对滑块做功,将6 J的弹性势能全部转化为滑块的机械能,C正确。‎ ‎7.(2017·佛山模拟)如图所示,一根长为L不可伸长的轻绳跨过光滑的水平轴O,两端分别连接质量为‎2m的小球A和质量为m的物块B,由图示位置释放后,当小球转动到水平轴正下方时轻绳的中点正好在水平轴O点,且此时物块B的速度刚好为零,则下列说法中正确的是(   )‎ A.物块B一直处于静止状态 B.小球A从图示位置运动到水平轴正下方的过程中机械能守恒 C.小球A运动到水平轴正下方时的速度小于 D.小球A从图示位置运动到水平轴正下方的过程中,小球A与物块B组成的系统机械能守恒 解析:选CD 当小球转动到水平轴正下方时轻绳的中点正好在水平轴O点,所以小球A下降的高度为,物块B会上升一定的高度h,由机械能守恒得·2mv2=2mg·-mgh,所以小球A运动到水平轴正下方时的速度v<,A错误,C正确;在整个过程中小球A与物块B组成的系统机械能守恒,B错误,D正确。‎ ‎8.如图所示,固定在水平面上的光滑斜面倾角为30°,质量分别为M、m的两个物体通过细绳及轻弹簧连接于光滑轻滑轮两侧,斜面底端有一与斜面垂直的挡板。开始时用手按住物体M,此时M距离挡板的距离为s,滑轮两边的细绳恰好伸直,而没有力的作用。已知M=‎2m,空气阻力不计。松开手后,关于二者的运动,下列说法中正确的是(   )‎ A.M和m组成的系统机械能守恒 B.当M的速度最大时,m与地面间的作用力为零 C.若M恰好能到达挡板处,则此时m的速度为零 D.若M恰好能到达挡板处,则此过程中重力对M做的功等于弹簧弹性势能的增加量与物体m的机械能增加量之和 解析:选BD M在运动过程中,M、m与弹簧组成的系统机械能守恒,A错误;当M速度最大时,弹簧的弹力等于Mgsin 30°=mg,此时m对地面的压力恰好为零,B正确;然后M做减速运动,恰好能到达挡板时,也就是速度刚好减小到零,之后M会上升,所以此时弹簧弹力大于mg,即此时m受到的绳拉力大于自身重力,m还在加速上升,C错误;根据功能关系,M减小的机械能,等于m增加的机械能与弹簧增加弹性势能之和,而M恰好到达挡板时,动能恰好为零,因此减小的机械能等于减小的重力势能,即等于重力对M做的功,D正确。‎ 三、计算题 ‎9.(2017·阜阳质检)半径R=‎0.50 m的光滑圆环固定在竖直平面内,轻质弹簧的一端固定在环的最高点A处,另一端系一个质量m=‎0.20 kg的小球,小球套在圆环上,已知弹簧的原长为L0=‎0.50 m,劲度系数k=4.8 N/m。将小球从如图所示的位置由静止开始释放,小球将沿圆环滑动并通过最低点C,在C点时弹簧的弹性势能EpC=0.6 J。(g取‎10 m/s2),求:‎ ‎(1)小球经过C点时的速度vC的大小;‎ ‎(2)小球经过C点时对环的作用力的大小和方向。‎ 解析:(1)小球从B到C,根据机械能守恒定律有 mg(R+Rcos 60°)=EpC+mvC2‎ 解得vC=‎3 m/s。‎ ‎(2)小球经过C点时受到三个力作用,即重力G、弹簧弹力F、环的作用力FN,假设环对小球的作用力方向向上,对小球根据牛顿第二定律有 F+FN-mg=m F=kx 解得FN=3.2 N。‎ 假设成立,环对小球的作用力方向竖直向上。根据牛顿第三定律得出,小球对环的作用力大小为3.2 N,方向竖直向下。‎ 答案:(1)‎3 m/s (2)3.2 N,方向竖直向下 ‎10.如图所示,一内壁光滑的细管弯成半径为R=‎0.4 m的半圆形轨道CD,竖直放置,其内径略大于小球的直径,水平轨道与竖直半圆轨道在C点连接完好。置于水平轨道上的弹簧左端与竖直墙壁相连,B处为弹簧的自然状态。将一个质量为m=‎0.8 kg的小球放在弹簧的右侧后,用力向左侧推小球而压缩弹簧至A处,然后将小球由静止释放,小球运动到C处后对轨道的压力为 F1=58 N。水平轨道以B处为界,左侧AB段长为x=‎0.3 m,与小球间的动摩擦因数为μ=0.5,右侧BC段光滑。g=‎10 m/s2,求:‎ ‎(1)弹簧在压缩时所储存的弹性势能;‎ ‎(2)小球运动到轨道最高处D点时对轨道的压力大小。‎ 解析:(1)小球运动到C处时,由牛顿第三定律得轨道对小球的支持力F1′=F1=58 N,‎ 由牛顿第二定律得F1′-mg=m 解得v1= 。‎ 代入数据解得v1=‎5 m/s 根据动能定理得Ep-μmgx=mv12‎ 代入数据解得Ep=11.2 J。‎ ‎(2)小球从C到D过程,由机械能守恒定律得 mv12=2mgR+mv22‎ 代入数据解得v2=‎3 m/s。‎ 由于v2>=‎2 m/s,所以小球在D处对轨道外壁有压力,由牛顿第二定律得F2+mg=m 代入数据解得F2=10 N。‎ 根据牛顿第三定律,小球对轨道的压力大小为10 N。‎ 答案:(1)11.2 J (2)10 N ‎11.如图所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与水平线AB平齐,静止放在倾角为53°的光滑斜面上。一长为L=‎9 cm的轻质细绳一端固定在O点,另一端系一质量为m=‎1 kg的小球,将细绳拉直呈水平,使小球在位置C由静止释放,小球到达最低点D时,细绳刚好被拉断。之后小球在运动过程中恰好沿斜面方向将弹簧压缩,最大压缩量为x=‎5 cm。(g=‎10 m/s2,sin 53°=0.8,cos 53°=0.6)求:‎ ‎(1)细绳受到的拉力的最大值;‎ ‎(2)D点到水平线AB的高度h;‎ ‎(3)弹簧所获得的最大弹性势能Ep。‎ 解析:(1)小球由C运动到D,由机械能守恒定律得:‎ mgL=mv12‎ 解得v1=①‎ 在D点,由牛顿第二定律得 FT-mg=m②‎ 由①②解得FT=30 N。‎ 由牛顿第三定律知细绳所能承受的最大拉力为30 N。‎ ‎(2)由D到A,小球做平抛运动 vy2=2gh③‎ tan 53°=④‎ 联立①③④解得h=‎16 cm。‎ ‎(3)小球从C点到将弹簧压缩至最短的过程中,小球与弹簧组成的系统机械能守恒,‎ 即Ep=mg(L+h+xsin 53°),‎ 代入数据得:Ep=2.9 J。‎ 答案:(1)30 N (2)‎16 cm (3)2.9 J
查看更多

相关文章

您可能关注的文档