- 2021-05-23 发布 |
- 37.5 KB |
- 24页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
福建省龙岩市上杭一中2016届高三上学期月考物理试卷(12月份)
www.ks5u.com 2015-2016学年福建省龙岩市上杭一中高三(上)月考物理试卷(12月份) 一.选择题 1.关于静电场,下列结论普遍成立的是( ) A.电场强度大的地方电势高,电场强度小的地方电势低 B.电场中任意两点之间的电势差只与这两点的场强有关 C.在正电荷或负电荷产生的静电场中,场强方向都指向电势降低最快的方向 D.将正点电荷从场强为零的一点移动到场强为零的另一点,电场力做功这零 2.用电动势为E、内电阻为r的电池组直接向线圈电阻为R的电动机供电,电动机正常工作后,测得通过的电流为I、电动机两端的电压为U,则( ) A.电路中电流 B.在时间t内,电池组消耗的化学能为IEt C.在时间t内,电动机输出的机械能是IEt﹣I2rt D.以上说法都不对 3.均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球面AB上均匀分布正电荷,总电荷量为q,球面半径为R,CD为通过半球顶点与球心O的轴线,在轴线上有M、N两点,OM=ON=2R.已知M点的场强大小为E,则N点的场强大小为( ) A.﹣E B. C.﹣E D. +E 4.如图所示,平行金属板中带电质点P原处与静止状态,不考虑电流表和电压表对电路的影响,当滑动变阻器R4的滑片向a端移动时,则( ) A.电压表读数减小 B.电流表读数减小 C.质点P将向上运动 D.R3上消耗的功率逐渐增大 5.R1与R2并联在电路中,通过R1与R2的电流之比为1:2,则当R1与R2串联后接入电路中时,R1和R2两端电压之比U1:U2为( ) A.1:2 B.2:1 C.1:4 D.4:1 6.某个由导电介质制成的电阻截面如图所示.导电介质的电阻率为ρ,制成内、外半径分别为a和b的半球壳层形状(图中阴影部分),半径为a、电阻不计的球形电极被嵌入导电介质的球心成为一个引出电极,在导电介质的外层球壳上镀上一层电阻不计的金属膜成为另外一个电极.设该电阻的阻值为R.下面给出R的四个表达式中只有一个是合理的,你可能不会求解R,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断.根据你的判断,R的合理表达式应为( ) A. B. C. D. 7.两根完全相同的金属裸导线,如果把其中的一根均匀拉长到原来的2倍,把另一根对折后绞合起来,然后给它们分别加相同电压后,则在同一时间内通过它们的电荷量之比为( ) A.1:4 B.1:8 C.1:16 D.16:1 8.如图所示,示波管的结构中有两对互相垂直的偏转电极XX′和YY′,若在XX′上加如图所示的扫描电压Ux,在YY′上加信号电压Uy ,在示波管荧光屏上看到的图形可能是( ) A. B. C. D. 9.如图甲所示,足够长的木板B静置于光滑水平面上,其上放置小滑块A.木板B受到随时间t变化的水平拉力F作用时,用传感器测出木板B的加速度a,得到如图乙所示的a﹣F图象,已知g取10m/s2,则( ) A.滑块A的质量为4kg B.木板B的质量为1kg C.当F=10N时木板B加速度为4 m/s2 D.滑块A与木板B间动摩擦因数为0.1 10.如图甲所示,A、B是一对平行金属板.A板的电势φA=0,B板的电势φB随时间的变化规律为如图乙所示,现有一电子从A板上的小孔进入两板间的电场区内.电子的初速度和重力的影响均可忽略,则( ) A.若电子是在t=0时刻进入的,它可能不会到达B板 B.若电子是在t=时刻进入的,它一定不能到达B板 C.若电子是在t=时刻进入的,它可能时而向B板运动,时而向A板运动,最后穿过B板 D.若电子是在t=时刻进入的,它可能时而向B板运动,时而向A板运动,最后穿过B板 11.如图所示,不带电物体A和带电的物体B用跨过定滑轮的绝缘轻绳连接,A、B的质量分别是2m和m.劲度系数为k的轻质弹簧一端固定在水平面上,另一端与物体A相连,倾角为θ的绝缘斜面处于沿斜面向上的匀强电场中.开始时,物体B受到沿斜面向上的外力F=3mgsinθ的作用而保持静止,且轻绳恰好伸直.现撤去外力F,直到物体B获得最大速度,且弹簧未超过弹性限度,不计一切摩擦.则在此过程中( ) A.物体B所受电场力大小为mgsinθ B.B的速度最大时,弹簧的伸长量为 C.撤去外力F的瞬间,物体B的加速度为gsinθ D.物体A、弹簧和地球组成的系统机械能增加量等于物体B和地球组成的系统机械能的减少量 12.静电场在x轴上的场强E随x的变化关系如图所示,x轴正向为场强正方向,带正电的点电荷沿x轴运动,则点电荷( ) A.在x2和x4处电势能相等 B.由x1运动到x3的过程中电势能增大 C.由x1运动到x4的过程中电场力先增大后减小 D.由x1运动到x4的过程中电场力先减小后增大 二.实验题 13.在“测定金属导体的电阻率”的实验中,待测金属丝的电阻Rx约为5Ω,实验室备有下列实验器材 A.电压表V1(量程0~3V,内阻约为15kΩ) B.电压表V2(量程0~15V,内阻约为75kΩ) C.电流表A1(量程0~3A,内阻约为0.2Ω) D.电流表A2(量程0~0.6A,内阻约为11Ω) E.变阻器R1(0~100Ω,0.6A) F.变阻器R2(0~2 000Ω,0.1A) G.电池组E(电动势为3V,内阻约为0.3Ω) H.开关S,导线若干 (1)为减小实验误差,应选用的实验器材有(填代号) . (2)为减小实验误差,应选用图1中 (填甲或乙)为该实验的电路原理图,并按所选择的电路原理图把图2中的实物图用线连接起来. (3)若用毫米刻度尺测得金属丝长度为60.00cm,用螺旋测微器测得金属丝的直径(如图3)及两电表的示数如图4所示,则金属丝的直径为 mm,电阻值为 Ω. 三.计算题 14.如图所示,AB是一倾角为θ=37°的绝缘粗糙直轨道,滑块与斜面间的动摩擦因数μ=0.30,BCD是半径为R=0.2m的光滑圆弧轨道,它们相切于B点,C为圆弧轨道的最低点,整个空间存在着竖直向上的匀强电场,场强E=4.0×103N/C,质量m=0.20kg的带电滑块从斜面顶端由静止开始滑下.已知斜面AB对应的高度h=0.24m,滑块带电荷q=﹣5.0×10﹣4C,取重力加速度g=10m/s2,sin37°=0.60,cos37°=0.80.求: (1)滑块从斜面最高点滑到斜面底端B点时的速度大小; (2)滑块滑到圆弧轨道最低点C时对轨道的压力. 15.在光滑绝缘水平面上放置一质量m=0.2kg、q=+5.0×10﹣4C的小球,小球系在长L=0.5m的绝缘细线上,线的另一端固定在O点.整个装置置于匀强电场中,电场方向与水平面平行且沿OA方向,如图所示(此图为俯视图).现给小球一初速度使其绕O点做圆周运动,小球经过A点时细线的张力F=140N,小球在运动过程中,最大动能比最小动能大△EK=20J,小球视为质点. (1)求电场强度E的大小; (2)求运动过程中小球的最小动能; (3)若小球运动到动能最小的位置时细线被剪断,则小球经多长时间其动能与在A点时的动能相等?此时小球距A点多远? 16.如图所示,A、B为两块平行金属板,A板带正电、B板带负电.两板之间存在着匀强电场,两板间距为d、电势差为U,在B板上开有两个间距为L的小孔.C、D为两块同心半圆形金属板,圆心都在贴近B板的O′处,C带正电、D带负电.两板间的距离很近,两板末端的中心线正对着B板上的小孔,两板间的电场强度可认为大小处处相等,方向都指向O′.半圆形金属板两端与B板的间隙可忽略不计.现从正对B板小孔紧靠A板的O处由静止释放一个质量为m、电量为q的带正电微粒(微粒的重力不计),问: (1)微粒穿过B板小孔时的速度多大; (2)为了使微粒能在CD板间运动而不碰板,CD板间的电场强度大小应满足什么条件; (3)从释放微粒开始,经过多长时间微粒会通过半圆形金属板间的最低点P点? 2015-2016学年福建省龙岩市上杭一中高三(上)月考物理试卷(12月份) 参考答案与试题解析 一.选择题 1.关于静电场,下列结论普遍成立的是( ) A.电场强度大的地方电势高,电场强度小的地方电势低 B.电场中任意两点之间的电势差只与这两点的场强有关 C.在正电荷或负电荷产生的静电场中,场强方向都指向电势降低最快的方向 D.将正点电荷从场强为零的一点移动到场强为零的另一点,电场力做功这零 【考点】电场线;电场强度;电势. 【分析】电场强度与电势之间无必然联系,但沿电场方向电势降低,而且速度最快;电势差与两点的场强无关,只与两点间沿电场方向的距离和两点间的场强有关;电场力做功,只与电荷以及两点间的电势差有关,与两点的场强没有关系. 【解答】解:A:在正电荷的电场中,离正电荷近,电场强度大,电势高,离正电荷远,电场强度小,电势低;而在负电荷的电场中,离正电荷近,电场强度大,电势低,离负电荷远,电场强度小,电势高,故A错误. B:电势差的大小决定于两点间沿电场方向的距离和电场强度,故B错误 C:沿电场方向电势降低,而且速度最快,故C正确 D:电场力做功,只与电荷以及两点间的电势差有关,与两点的场强没有关系.场强为零,电势不一定为零,如从带正电荷的导体球上将正电荷移动到另一带负电荷的导体球上,电场力做正功.故D错误 故选:C. 2.用电动势为E、内电阻为r的电池组直接向线圈电阻为R的电动机供电,电动机正常工作后,测得通过的电流为I、电动机两端的电压为U,则( ) A.电路中电流 B.在时间t内,电池组消耗的化学能为IEt C.在时间t内,电动机输出的机械能是IEt﹣I2rt D.以上说法都不对 【考点】闭合电路的欧姆定律;电功、电功率. 【分析】发动机为非纯电阻用电器故不能使用欧姆定律求得电路中的电流;但由P=UI可求得电动机的功率;由EI可求得电池消耗的化学能. 【解答】解:A、因发电机为非纯电阻电路,故闭合电路欧姆定律不能使用,故A错误; B、电池组消耗的化学能等于电池的输出电能,故化学能为EIt;故B正确; C、电动机输出的功率P=UI,故C错误; D、因B正确,故D错误; 故选B. 3.均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球面AB上均匀分布正电荷,总电荷量为q,球面半径为R,CD为通过半球顶点与球心O的轴线,在轴线上有M、N两点,OM=ON=2R.已知M点的场强大小为E,则N点的场强大小为( ) A.﹣E B. C.﹣E D. +E 【考点】电场强度;电场的叠加. 【分析】均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场, 假设将带电量为2q的球面放在O处在M、N点所产生的电场和半球面在M点的场强对比求解. 【解答】解:若将带电量为2q的球面放在O处, 均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场. 则在M、N点所产生的电场为E==, 由题知当半球面如图所示产生的场强为E,则N点的场强为 E′=﹣E, 故选A. 4.如图所示,平行金属板中带电质点P原处与静止状态,不考虑电流表和电压表对电路的影响,当滑动变阻器R4的滑片向a端移动时,则( ) A.电压表读数减小 B.电流表读数减小 C.质点P将向上运动 D.R3上消耗的功率逐渐增大 【考点】闭合电路的欧姆定律;电容器. 【分析】先由滑片的移动可知电路中电阻的变化,再由闭合电路欧姆定律可知各电表示数的变化及电容器两端的电压变化;再分析电容器板间场强的变化,由质点的受力情况可知质点的运动情况. 【解答】解: A、B由图可知,R2与滑动变阻器R4串联后与R3并联后,再由R1串联接在电源两端;电容器与R3并联; 当R4的滑片向a移动时,滑动变阻器接入电阻增大,则电路中总电阻增大;由闭合电路欧姆定律可知,电路中总电流减小,路端电压增大,则R1两端的电压减小,可知并联部分的电压增大,电压表读数增大. 由欧姆定律可知流过R3的电流增大,根据并联电路的特点可知:流过R2的电流减小,则电流表示数减小;故A错误,B正确; C、因电容器两端电压增大,板间场强增大,质点受到的向上电场力增大,故质点P将向上运动,故C正确; D、因R3两端的电压增大,由P=可知,R3上消耗的功率增大; 故D正确; 故选:BCD. 5.R1与R2并联在电路中,通过R1与R2的电流之比为1:2,则当R1与R2串联后接入电路中时,R1和R2两端电压之比U1:U2为( ) A.1:2 B.2:1 C.1:4 D.4:1 【考点】串联电路和并联电路;欧姆定律. 【分析】由并联电路的电流规律可得出两电阻的比值;由串联电路的电压规律可得出电压之比. 【解答】解:并联电路中电阻之比等于电流的反比,故=; 由串联电路的规律可知,电压之比等于电阻之比,故U1:U2=2:1; 故选B. 6.某个由导电介质制成的电阻截面如图所示.导电介质的电阻率为ρ,制成内、外半径分别为a和b的半球壳层形状(图中阴影部分),半径为a、电阻不计的球形电极被嵌入导电介质的球心成为一个引出电极,在导电介质的外层球壳上镀上一层电阻不计的金属膜成为另外一个电极.设该电阻的阻值为R.下面给出R的四个表达式中只有一个是合理的,你可能不会求解R,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断.根据你的判断,R的合理表达式应为( ) A. B. C. D. 【考点】电阻定律. 【分析】根据等式左右两边的单位是否相同,判断是否合理.当左右两边的单位相同时,等式才合理.再将b=﹣a代入分析是否合理. 【解答】解:A、等式左边的单位是Ω,右边的单位是Ω,单位是合理的.将b=a代入得到R≠0,因为电阻是很薄的一层,电阻应该很小,这个等式是不合理的.故A错误. B、等式左边的单位是Ω,右边的单位是Ω,单位是合理的.将b=a代入得到R=0,根据上面分析是合理的.故B正确. C、等式左边的单位是Ω,右边的单位是Ω•m2,左右两边单位不同,则此式不合理.故C错误. D、等式左边的单位是Ω,右边的单位是Ω•m2,左右两边单位不同,则此式不合理.故D错误. 故选B 7.两根完全相同的金属裸导线,如果把其中的一根均匀拉长到原来的2倍,把另一根对折后绞合起来,然后给它们分别加相同电压后,则在同一时间内通过它们的电荷量之比为( ) A.1:4 B.1:8 C.1:16 D.16:1 【考点】欧姆定律;电阻定律. 【分析】根据电阻定律可判断出两根金属导线的电阻之比,根据欧姆定律得出电流之比,再根据q=It得出通过的电荷量之比. 【解答】 解:设原来的电阻为R,其中的一根均匀拉长到原来的2倍,横截面积变为原来的,根据电阻定律R=,电阻R1=4R;另一根对折后绞合起来,长度减小为原来的一半,横截面积变为原来的2倍,根据电阻定律R=,可得电阻R2=R,则两电阻之比为16;1.电压相等,根据欧姆定律,电流比为1:16,根据q=It知相同时间内通过的电量之比为1:16.故C正确,A、B、D错误. 故选:C. 8.如图所示,示波管的结构中有两对互相垂直的偏转电极XX′和YY′,若在XX′上加如图所示的扫描电压Ux,在YY′上加信号电压Uy,在示波管荧光屏上看到的图形可能是( ) A. B. C. D. 【考点】示波管及其使用. 【分析】示波管的YY′偏转电压上加的是待显示的信号电压,XX′偏转电极通常接入锯齿形电压,即扫描电压,当信号电压与扫描电压周期相同时,就可以在荧光屏上得到待测信号在一个周期内的稳定图象. 【解答】解:因甲图XX′偏转电极接入的是锯齿形电压,即扫描电压,且周期与YY′偏转电压上加的是待显示的信号电压相同,所以在荧光屏上得到的信号在一个周期内的稳定图象.则显示的图象与YY′所载入的图象形状是一样的. 故选:A 9.如图甲所示,足够长的木板B静置于光滑水平面上,其上放置小滑块A.木板B受到随时间t变化的水平拉力F作用时,用传感器测出木板B的加速度a,得到如图乙所示的a﹣F图象,已知g取10m/s2,则( ) A.滑块A的质量为4kg B.木板B的质量为1kg C.当F=10N时木板B加速度为4 m/s2 D.滑块A与木板B间动摩擦因数为0.1 【考点】牛顿第二定律;物体的弹性和弹力. 【分析】当拉力较小时,m和M保持相对静止一起做匀加速直线运动,当拉力达到一定值时,m和M发生相对滑动,结合牛顿第二定律,运用整体和隔离法分析. 【解答】解:A、当F等于8N时,加速度为:a=2m/s2,对整体分析,由牛顿第二定律有:F=(M+m)a,代入数据解得:M+m=4kg,当F大于8N时,对B,由牛顿第二定律得:a==F﹣,由图示图象可知,图线的斜率:k====1,解得,木板B的质量:M=1kg,滑块A的质量为:m=3kg.故A错误,B正确. C、根据F大于8N的图线知,F=6时,a=0,由a=F﹣,可知:0=×6﹣,解得:μ=0.2,由图示图象可知,当F=10N时,滑块与木板相对滑动,滑块的加速度为:a=a=F﹣=×10﹣=4m/s2,故C正确,D错误. 故选:BC. 10.如图甲所示,A、B是一对平行金属板.A板的电势φA=0,B板的电势φB随时间的变化规律为如图乙所示,现有一电子从A板上的小孔进入两板间的电场区内.电子的初速度和重力的影响均可忽略,则( ) A.若电子是在t=0时刻进入的,它可能不会到达B板 B.若电子是在t=时刻进入的,它一定不能到达B板 C.若电子是在t=时刻进入的,它可能时而向B板运动,时而向A板运动,最后穿过B板 D.若电子是在t=时刻进入的,它可能时而向B板运动,时而向A板运动,最后穿过B板 【考点】带电粒子在匀强电场中的运动. 【分析】分析电子的受力情况,来确定电子的运动情况,如果电子一直向右运动,一定能到达B板;如果时而向B板运动,时而向A板运动,则通过比较两个方向的位移大小,分析能否到达B板. 【解答】解:A、电子在t=0时刻进入时,在一个周期内,前半个周期受到的电场力向右,向右做加速运动,后半个周期受到的电场力向左,继续向右做减速运动,T时刻速度为零,接着周而复始,所以电子一直向B板运动,一定会到达B板.故A错误. B、若电子是在t=时刻进入时,在一个周期内:在~T,电子受到的电场力向左,向左做加速运动,在T~内,受到的电场力向右,继续向左做减速运动,时刻速度为零,接着周而复始,所以电子一直向A板运动,一定不会到达B板.故B正确. C、若电子是在t=时刻进入时,在~,电子受到的电场力向右,向右做加速运动,在~,受到的电场力向左,继续向右做减速运动,时刻速度为零,在~T,电子受到的电场力向左,向左做加速运动,在T~,受到的电场力向左,继续向左做减速运动, 时刻速度为零,完成了一个周期的运动,在一个周期内,向右的位移大于向左的位移,所以总的位移向右,接着周而复始,最后穿过B板.故C正确; D、若电子是在t=时刻进入时,与在t=时刻进入时情况,在运动一个周期时间内,时而向B板运动,时而向A板运动,总的位移向左,最后穿过A板.故D错误. 故选:BC 11.如图所示,不带电物体A和带电的物体B用跨过定滑轮的绝缘轻绳连接,A、B的质量分别是2m和m.劲度系数为k的轻质弹簧一端固定在水平面上,另一端与物体A相连,倾角为θ的绝缘斜面处于沿斜面向上的匀强电场中.开始时,物体B受到沿斜面向上的外力F=3mgsinθ的作用而保持静止,且轻绳恰好伸直.现撤去外力F,直到物体B获得最大速度,且弹簧未超过弹性限度,不计一切摩擦.则在此过程中( ) A.物体B所受电场力大小为mgsinθ B.B的速度最大时,弹簧的伸长量为 C.撤去外力F的瞬间,物体B的加速度为gsinθ D.物体A、弹簧和地球组成的系统机械能增加量等于物体B和地球组成的系统机械能的减少量 【考点】匀强电场中电势差和电场强度的关系;功能关系. 【分析】在撤去外力前后对B物体受力分析,求出电场力,由牛顿第二定律求得加速度,当B受到的合力为零时,速度最大,结合能量守恒即可判断. 【解答】解:A、当施加外力时,对B分析可知F﹣mgsinθ﹣F电=0 解得F电=2mgsinθ,故A错误 B、当B受到的合力为零时,B的速度最大,由kx=F电+mgsinθ,解得x=,故B正确; C、当撤去外力瞬间,它们受到的合力为F合=F电+mgsinθ=(m+2m)a 解得:a=gsinθ,故C正确; D、B电场力做正功,电势能减小,物体A、弹簧和地球组成的系统机械能增加量不等于物体B和地球组成的系统机械能的减少量,故D错误; 故选:BC 12.静电场在x轴上的场强E随x的变化关系如图所示,x轴正向为场强正方向,带正电的点电荷沿x轴运动,则点电荷( ) A.在x2和x4处电势能相等 B.由x1运动到x3的过程中电势能增大 C.由x1运动到x4的过程中电场力先增大后减小 D.由x1运动到x4的过程中电场力先减小后增大 【考点】电势能;电场强度. 【分析】由图可以看出在0﹣x1处场强为正,x1﹣+∞处场强为负方向,沿着电场线的方向电势降低,对于正电荷而言电势降低则电势能减小. 【解答】解:A、x2﹣x4处场强为x轴负方向,则从x2到x4处逆着电场线方向移动,电势升高,正电荷在x4处电势能较大,故A错误; B、x1﹣x3处场强为x轴负方向,则从x1到x3处逆着电场线方向移动,电势升高,正电荷在x3处电势能较大,B正确; C、由x1运动到x4的过程中,由图可以看出电场强度的绝对值先增大后减小,故电场力先增大后减小,故C正确,D错误; 故选:BC. 二.实验题 13.在“测定金属导体的电阻率”的实验中,待测金属丝的电阻Rx 约为5Ω,实验室备有下列实验器材 A.电压表V1(量程0~3V,内阻约为15kΩ) B.电压表V2(量程0~15V,内阻约为75kΩ) C.电流表A1(量程0~3A,内阻约为0.2Ω) D.电流表A2(量程0~0.6A,内阻约为11Ω) E.变阻器R1(0~100Ω,0.6A) F.变阻器R2(0~2 000Ω,0.1A) G.电池组E(电动势为3V,内阻约为0.3Ω) H.开关S,导线若干 (1)为减小实验误差,应选用的实验器材有(填代号) ADEGH . (2)为减小实验误差,应选用图1中 乙 (填甲或乙)为该实验的电路原理图,并按所选择的电路原理图把图2中的实物图用线连接起来. (3)若用毫米刻度尺测得金属丝长度为60.00cm,用螺旋测微器测得金属丝的直径(如图3)及两电表的示数如图4所示,则金属丝的直径为 0.635 mm,电阻值为 2.4 Ω. 【考点】测定金属的电阻率. 【分析】(1)根据电源电动势选择电压表,由欧姆定律求出电路最大电流,根据电路最大电流选择电流表,为方便实验操作,应选最大阻值较小的滑动变阻器. (2)根据待测电阻阻值与电表内阻的关系确定电流表采用内接法还是外接法,然后选择实验电路. (3)由图示电表读出其示数,应用欧姆定律求出电阻阻值,由电阻定律求出电阻率. 【解答】解:(1)由于电源的电动势为3 V,所以电压表应选A,被测电阻阻值约为5Ω,电路中的最大电流约为I==A=0.6 A,电流表应选D,根据变阻器允许通过的最大电流可知,变阻器应选E,还要选用电池和开关,导线若干.故应选用的实验器材有:ADEGH. (2)由于>,应采用电流表外接法,应选乙所示电路,实物连接如下图所示. (3)从螺旋测微器可以读出金属丝的直径为0.635 mm,从电压表可以读出电阻两端电压为1.20 V,从电流表可以读出流过电阻的电流为0.50 A,被测电阻的阻值为:Rx==Ω=2.4Ω. 答案:(1)ADEGH;(2)乙,如解析图所示;(3)0.635,2.4 三.计算题 14.如图所示,AB是一倾角为θ=37°的绝缘粗糙直轨道,滑块与斜面间的动摩擦因数μ=0.30,BCD是半径为R=0.2m的光滑圆弧轨道,它们相切于B点,C为圆弧轨道的最低点,整个空间存在着竖直向上的匀强电场,场强E=4.0×103N/C,质量m=0.20kg的带电滑块从斜面顶端由静止开始滑下.已知斜面AB对应的高度h=0.24m,滑块带电荷q=﹣5.0×10﹣4C,取重力加速度g=10m/s2,sin37°=0.60,cos37°=0.80.求: (1)滑块从斜面最高点滑到斜面底端B点时的速度大小; (2)滑块滑到圆弧轨道最低点C时对轨道的压力. 【考点】动能定理的应用;牛顿第二定律;牛顿第三定律. 【分析】(1)滑块沿斜面滑下的过程中,根据动能定理求解滑到斜面底端B点时的速度大小 (2)滑块从B 到C 点,由动能定理可得C点速度,由牛顿第二定律和由牛顿第三定律求解. 【解答】解:(1)滑块沿斜面滑下的过程中,受到的滑动摩擦力 f=μ(mg+qE)cos37°=0.96N 设到达斜面底端时的速度为v,根据动能定理得 (mg+qE)h﹣ 解得 v 1=2.4m/s. (2)滑块从B 到C 点,由动能定理可得: (mg+qE)R(1﹣cos37°)= 当滑块经过最低点时,有 FN﹣(mg+qE)= 由牛顿第三定律:F′N=FN 解得:F′N=11.36N,方向竖直向下. 答:(1)滑块从斜面最高点滑到斜面底端B点时的速度大小是2.4m/s; (2)滑块滑到圆弧轨道最低点C时对轨道的压力是11.36N.方向竖直向下. 15.在光滑绝缘水平面上放置一质量m=0.2kg、q=+5.0×10﹣4C的小球,小球系在长L=0.5m的绝缘细线上,线的另一端固定在O点.整个装置置于匀强电场中,电场方向与水平面平行且沿OA方向,如图所示(此图为俯视图).现给小球一初速度使其绕O点做圆周运动,小球经过A点时细线的张力F=140N,小球在运动过程中,最大动能比最小动能大△EK=20J,小球视为质点. (1)求电场强度E的大小; (2)求运动过程中小球的最小动能; (3)若小球运动到动能最小的位置时细线被剪断,则小球经多长时间其动能与在A点时的动能相等?此时小球距A点多远? 【考点】匀强电场中电势差和电场强度的关系;牛顿第二定律. 【分析】(1)小球带正电,从A运动到其关于O对称的点的过程中,电场力做负功,动能减小,所以在A点动能最大,在其对称点的动能最小,根据动能定理求解电场强度E的大小; (2)在A处动能最大,已知小球经过A点时细线的张力F=140N,由牛顿第二定律和动能的计算式求解A处的动能,再由动能定理得到最小动能. (3)线断后球做类平抛运动,根据运动的分解,由牛顿第二定律和位移时间公式求解时间,并得到小球距A点的距离. 【解答】解:(1)设A点关于O点的对称点为B,则小球从A运动到B的过程中,电场力做负功,动能减小,所以在A点动能最大,在B点的动能最小. 小球在光滑水平面上运动的最大动能与最小动能的差值为△Ek=2qEL=20J 代入数据得:E=N/C=4×104N/C (2)在A处,由牛顿第二定律:F﹣qE=m, A处小球的动能为 EkA==(F﹣qE)L=××0.5=30(J) 小球的最小动能为 Ekmin=EkB=EkA﹣△Ek 代入数据得:EkB=30﹣20=10(J) (3)小球在B处的动能为 EkB= 解得:vB==m/s=10m/s 当小球的动能与在A点时的动能相等时,由动能定理可知:y=2L 线断后球做类平抛运动:y=•t2,x=vBt 代入数据后得:t=s,x=m 答:(1)电场强度E的大小为4×104N/C;(2)运动过程中小球的最小动能为10J; (3)若小球运动到动能最小的位置时细线被剪断,则小球经s其动能与在A点时的动能相等,此时小球距A点为m. 16.如图所示,A、B为两块平行金属板,A板带正电、B板带负电.两板之间存在着匀强电场,两板间距为d、电势差为U,在B板上开有两个间距为L的小孔.C、D为两块同心半圆形金属板,圆心都在贴近B板的O′处,C带正电、D带负电.两板间的距离很近,两板末端的中心线正对着B板上的小孔,两板间的电场强度可认为大小处处相等,方向都指向O′.半圆形金属板两端与B板的间隙可忽略不计.现从正对B板小孔紧靠A板的O处由静止释放一个质量为m、电量为q的带正电微粒(微粒的重力不计),问: (1)微粒穿过B板小孔时的速度多大; (2)为了使微粒能在CD板间运动而不碰板,CD板间的电场强度大小应满足什么条件; (3)从释放微粒开始,经过多长时间微粒会通过半圆形金属板间的最低点P点? 【考点】动能定理的应用;带电粒子在匀强电场中的运动. 【分析】运用动能定理研究微粒在加速电场的过程. 微粒进入半圆形金属板后,电场力提供向心力,列出等式. 匀加速直线运动和匀速圆周运动运用各自的规律求解时间. 【解答】解:(1)设微粒穿过B板小孔时的速度为v,根据动能定理,有(1) 解得 (2)微粒进入半圆形金属板后,电场力提供向心力,有(2) 联立(1)、(2),得 (3)微粒从释放开始经t1射出B板的小孔,则(3) 设微粒在半圆形金属板间运动经过t2第一次到达最低点P点,则(4) 所以从释放微粒开始,经过微粒第一次到达P点; 根据运动的对称性,易知再经过2(t1+t2)微粒再一次经过P点; … 所以经过时间,k=0,1,2,…微粒经过P点. 答:(1)微粒穿过B板小孔时的速度多大是; (2)为了使微粒能在CD板间运动而不碰板,CD板间的电场强度大小应满足; (3)从释放微粒开始,经过时间,k=0,1,2,…微粒经过P点. 2017年2月22日查看更多