高考理科数学福建卷试题及答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考理科数学福建卷试题及答案

‎2005年高考理科数学福建卷试题及答案 源头学子小屋 ‎ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回 祝各位考生考试顺利!‎ 第I卷(选择题 共60分)‎ 注意事项:‎ ‎1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上 ‎2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的 ‎1.复数的共轭复数是 ( )‎ ‎ A. B. C. D.‎ ‎2.已知等差数列中,,则的值是 ( )‎ ‎ A.15 B.‎30 ‎C.31 D.64‎ ‎3.在△ABC中,∠C=90°,则k的值是 ( )‎ ‎ A.5 B.-‎5 ‎C. D.‎ ‎4.已知直线m、n与平面,给出下列三个命题:‎ ‎ ①若 ‎ ②若 ‎ ③若 ‎ 其中真命题的个数是 ( )‎ ‎ A.0 B.‎1 ‎C.2 D.3‎ ‎5.函数的图象如图,其中a、b为常数,则下列结论正确的是 ( )‎ ‎ A.‎ ‎ B.‎ ‎ C.‎ ‎ D.‎ ‎6.函数的部分图象如图,则 ( )‎ ‎ A. B.‎ ‎ C. D.‎ ‎7.已知p:则p是q的( )‎ ‎ A.充分不必要条件 B.必要不充分条件 ‎ C.充要条件 D.既不充分也不必要条件 ‎8.如图,长方体ABCD—A1B‎1C1D1中,AA1=AB=2,‎ AD=1,点E、F、G分别是DD1、AB、CC1的中 点,则异面直线A1E与GF所成的角是( )‎ ‎ A. B.‎ ‎ C. D.‎ ‎9.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( )‎ ‎ A.300种 B.240种 C.144种 D.96种 ‎10.已知F1、F2是双曲线的两焦点,以线段F‎1F2为边作正三角形MF‎1F2,若边MF1的中点在双曲线上,则双曲线的离心率是( )‎ ‎ A. B. C. D.‎ ‎11.设的最小值是 ( )‎ ‎ A. B. C.-3 D.‎ ‎12.是定义在R上的以3为周期的奇函数,且在区间(0,6)内解的个数的最小值是 ( )‎ ‎ A.2 B.‎3 ‎C.4 D.5‎ 第Ⅱ卷(非选择题 共90分)‎ 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置 ‎13.展开式中的常数项是 (用数字作答)‎ ‎14.非负实数满足的最大值为 ‎ ‎15.若常数b满足|b|>1,则 .‎ ‎16.把下面不完整的命题补充完整,并使之成为真命题:‎ 若函数的图象与的图象关于____对称,则函数=______‎ ‎(注:填上你认为可以成为真命题的一件情形即可,不必考虑所有可能的情形).‎ 三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.‎ ‎17.(本小题满分12分)‎ 已知.‎ ‎ (I)求sinx-cosx的值;‎ ‎ (Ⅱ)求的值.‎ ‎ ‎ ‎18.(本小题满分12分)‎ 甲、乙两人在罚球线投球命中的概率分别为,投中得1分,投不中得0分.‎ ‎(Ⅰ)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望;‎ ‎(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;‎ ‎19.(本小题满分12分)‎ 已知函数的图象在点M(-1,f(x))处的切线方程为x+2y+5=0.‎ ‎(Ⅰ)求函数y=f(x)的解析式;‎ ‎(Ⅱ)求函数y=f(x)的单调区间.‎ ‎20.(本小题满分12分)‎ 如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.‎ ‎(Ⅰ)求证AE⊥平面BCE;‎ ‎(Ⅱ)求二面角B—AC—E的大小;‎ ‎(Ⅲ)求点D到平面ACE的距离.‎ ‎21.(本小题满分12分)‎ 已知方向向量为v=(1,)的直线l过点(0,-2)和椭圆C:的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.‎ ‎(Ⅰ)求椭圆C的方程;‎ ‎(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足cot∠MON≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.‎ ‎22.(本小题满分14分)‎ 已知数列{an}满足a1=a, an+1=1+我们知道当a取不同的值时,得到不同的数列,如当a=1时,得到无穷数列:‎ ‎(Ⅰ)求当a为何值时a4=0;‎ ‎(Ⅱ)设数列{bn}满足b1=-1, bn+1=,求证a取数列{bn}中的任一个数,都可以得到一个有穷数列{an};‎ ‎(Ⅲ)若,求a的取值范围.‎ ‎2005年高考理科数学福建卷试题及答案 参考答案 ‎1. B. 2. A.3. A. 4. C. 5. D. 6. C. ‎ ‎7. A. 8. D. 9. B. 10. D. 11. C. 12. D?.‎ ‎12.解答:∵f(x)是奇函数,∴f(0)=0‎ ‎∵f(x)是以3为周期,f(2)=0‎ ‎∴f(3)=f(0+3)=f(0)=0 f(5)=f(2+3)=f(2)=0  ‎ ‎∵f(-1)=f(2-3)=f(2)=0;f(x)是奇函数,f(-1)=-f(1)=0。∴f(1)=0‎ ‎ f(4)=f(1+3)=f(1)=0‎ ‎∵f(x)是以3为周期,∴f(1.5)=f(1.5-3)=f(-1.5)=-f(1.5)  ‎ 也就是f(1.5)=-f(1.5),即‎2f(1.5)=0, f(1.5)=0  f(4.5)=f(1.5+3)=0‎ 由此可见,f(x)=0在区间(0,6)内的解有7个,分别是:1、2、3、4、5、1.5、4.5 ‎ 四个选项中都没有正确答案 ‎ 说明出题者当时忽视了f(4.5)=f(1.5)=0也成立的情况 构造出符合四个条件(1)定义在R上;(2)奇函数;(3)周期为3;(4)f(2)=0的一个函数f(x)=sinx+sinx,图像如下:‎ 只需后面再加上一项sin2πx,图像如下:‎ 就可以在上一个原有的根不变的的基础上增加四个根:‎ 若再增加一项:sin4πx 在前一个原有的根不变的基础上又可以增加四个根:这样符合四个条件的函数的根就有15个!‎ ‎13. 240 14. 9 15. .‎ ‎16.① ,② ,‎ ‎③ ,④ ,‎ 三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.‎ ‎17.(本小题满分12分)‎ 已知.‎ ‎ (I)求sinx-cosx的值;‎ ‎ (Ⅱ)求的值.‎ ‎ 本题主要考查三角函数的基本公式、三角恒等变换、各个象限内三角函数符号的特点等基本知识,以及推理和运算能力 解法一:(Ⅰ)由 ‎ 即 ‎ ‎ 又 ‎ 故 ‎ ‎ (Ⅱ)‎ ‎ ‎ ‎①②‎ ‎ 解法二:(Ⅰ)联立方程 ‎ 由①得将其代入②,整理得 ‎ ‎ ‎ 故 ‎ ‎ (Ⅱ)‎ ‎ ‎ ‎18.(本小题满分12分)‎ 甲、乙两人在罚球线投球命中的概率分别为,投中得1分,投不中得0分.‎ ‎(Ⅰ)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望;‎ ‎(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;‎ 本题主要考查概率的基本知识,运用数学知识解决问题的能力,以及推理和运算能力 解:(Ⅰ)依题意,记“甲投一次命中”为事件A,“乙投一次命中”为事件B,则 ‎ ‎ ‎ 甲、乙两人得分之和ξ的可能取值为0、1、2,则ξ概率分布为:‎ ξ ‎0‎ ‎1‎ ‎2‎ P ‎ ‎ ‎ 答:每人在罚球线各投球一次,两人得分之和ξ的数学期望为.‎ ‎ (Ⅱ)“甲、乙两人在罚球线各投球二次,这四次投球中至少一次命中”的事件是“甲、乙两人在罚球线各投球二次,这四次投球均未命中”的事件C的对立事件,‎ 而 ‎∴甲、乙两人在罚球线各投球二次,这四次投球中至少一次命中的概率为 答:甲、乙两人在罚球线各投球二次,这四次投球中至少一次命中的概率为 ‎19.(本小题满分12分)‎ 已知函数的图象在点M(-1,f(x))处的切线方程为x+2y+5=0.‎ ‎(Ⅰ)求函数y=f(x)的解析式;‎ ‎(Ⅱ)求函数y=f(x)的单调区间.‎ 本题考查函数的单调性,导数的运用等知识,考察运用数学知识、分析问题和解决问题的能力 解:由函数f(x)的图像在点M(-1,)处的切线的方程为x+2y+5=0,知,‎ ‎,∴‎ ‎(II),‎ ‎;‎ 由得到,‎ 所以函数f(x) 在上单调递减,在上单调递增 ‎20.(本小题满分12分)‎ 如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.‎ ‎(Ⅰ)求证AE⊥平面BCE;‎ ‎(Ⅱ)求二面角B—AC—E的大小;‎ ‎(Ⅲ)求点D到平面ACE的距离.‎ 本题主要考查直线、直线和平面基点和平面的距离等基础知识,考察空间想象能力,逻辑思维能力和运算能力 ‎(I)‎ ‎(II)连结AC、BD交于G,连结FG,∵ABCD为正方形,∴BD⊥AC,∵BF⊥平面ACE,∴FG⊥AC,∠FGB为二面角B-AC-E的平面角,由(I)可知,AE⊥平面BCE,∴AE⊥EB,又AE=EB,AB=2,AE=BE=,‎ 在直角三角形BCE中,CE=‎ 在正方形中,BG=,在直角三角形BFG中,‎ ‎∴二面角B-AC-E为 ‎(III)由(II)可知,在正方形ABCD中,BG=DG,D到平面ACB的距离等于B到平面ACE的距离,BF⊥平面ACE,线段BF的长度就是点B到平面ACE的距离,即为D到平面ACE的距离所以D到平面的距离为 另法:过点E作交AB于点O. OE=1.‎ ‎∵二面角D—AB—E为直二面角,∴EO⊥平面ABCD.‎ 设D到平面ACE的距离为h, ‎ 平面BCE, ‎ ‎∴点D到平面ACE的距离为 解法二:‎ ‎(Ⅰ)同解法一.‎ ‎(Ⅱ)以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴,过O点平行于AD的直线为z轴,建立空间直角坐标系O—xyz,如图.‎ 面BCE,BE面BCE, ,‎ 在的中点,‎ ‎ 设平面AEC的一个法向量为,‎ 则 ‎ 解得 ‎ 令得是平面AEC的一个法向量.‎ ‎ 又平面BAC的一个法向量为,‎ ‎ ‎ ‎ ∴二面角B—AC—E的大小为 ‎(III)∵AD//z轴,AD=2,∴,‎ ‎∴点D到平面ACE的距离 ‎21.(本小题满分12分)‎ 已知方向向量为v=(1,)的直线l过点(0,-2)和椭圆C:的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.‎ ‎(Ⅰ)求椭圆C的方程;‎ ‎(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足cot∠MON≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.‎ 本题考查直线、椭圆及平面向量的基本知识,平面解析几何的基本方法和综合解题能力 ‎(I)解法一:直线, ① ‎ 过原点垂直的直线方程为, ②‎ 解①②得 ‎∵椭圆中心(0,0)关于直线的对称点在椭圆C的右准线上,‎ ‎∵直线过椭圆焦点,∴该焦点坐标为(2,0).‎ ‎ 故椭圆C的方程为 ③‎ 解法二:直线.‎ 设原点关于直线对称点为(p,q),则解得p=3.‎ ‎∵椭圆中心(0,0)关于直线的对称点在椭圆C的右准线上,‎ ‎ ∵直线过椭圆焦点,∴该焦点坐标为(2,0).‎ ‎ 故椭圆C的方程为 ③‎ ‎(II)解法一:设M(),N().‎ 当直线m不垂直轴时,直线代入③,整理得 ‎ ‎ 点O到直线MN的距离 ‎ 即 ‎ ‎ ‎ ‎ 即 ‎ 整理得 ‎ 当直线m垂直x轴时,也满足.‎ ‎ 故直线m的方程为 ‎ 或或 ‎ 经检验上述直线均满足.‎ 所以所求直线方程为或或 解法二:设M(),N().‎ ‎ 当直线m不垂直轴时,直线代入③,整理得 ‎ ‎ ‎ ∵E(-2,0)是椭圆C的左焦点,‎ ‎ ∴|MN|=|ME|+|NE|‎ ‎=‎ ‎ 以下与解法一相同.‎ 解法三:设M(),N().‎ ‎ 设直线,代入③,整理得 ‎ ‎ ‎ ‎ ‎ ‎ 即 ‎ ‎ ‎ ‎ ‎ ‎ ∴=,整理得 ‎ ‎ 解得或 ‎ 故直线m的方程为或或 ‎ 经检验上述直线方程为 ‎ 所以所求直线方程为或或 ‎22.(本小题满分14分)‎ 已知数列{an}满足a1=a, an+1=1+我们知道当a取不同的值时,得到不同的数列,如当a=1时,得到无穷数列:‎ ‎(Ⅰ)求当a为何值时a4=0;‎ ‎(Ⅱ)设数列{bn}满足b1=-1, bn+1=,求证a取数列{bn}中的任一个数,都可以得到一个有穷数列{an};‎ ‎(Ⅲ)若,求a的取值范围.‎ 本题主要考查数列不等式的基础知识,考察逻辑思维能力、分析问题和解决问题的能力 ‎(I)解法1:‎ 解法2:‎ ‎(II)‎ 所以数列{只能有n项为有穷数列 ‎(III)解法一:因为 所以 ‎ 这就是所求的取值范围 解法二:‎ 为运算方便,引入Fibonacci数列:‎ ‎1,1,2,3,5,8,13,21,34,55,89,144,233…‎ 令 当n>1时,Fn+2- Fn+1 = Fn,而 ‎ 容易观察得到 ‎ 特别地,‎ 所以,当时,对于, ‎ 由 恒成立;所以 ‎ 所以 这就是所求的取值范围
查看更多

相关文章

您可能关注的文档