高考导数题型分析及解题方法

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考导数题型分析及解题方法

高考导数题型分析及解题方法 本知识单元考查题型与方法:‎ ‎※※与切线相关问题(一设切点,二求导数=斜率=,三代切点入切线、曲线联立方程求解);‎ ‎※※其它问题(一求导数,二解=0的根—若含字母分类讨论,三列3行n列的表判单调区间和极值。结合以上所得解题。)‎ 特别强调:恒成立问题转化为求新函数的最值。导函数中证明数列型不等式注意与原函数联系构造,一对多涉及到求和转化。‎ 关注几点:‎ 恒成立:(1)定义域任意x有>k,则>常数k;‎ ‎(2)定义域任意x有f(2)=2+c,解得c<-1或c>2‎ 题型六:利用导数研究方程的根 ‎1.已知平面向量=(,-1). =(,).‎ ‎(1)若存在不同时为零的实数k和t,使=+(t2-3),=-k+t,⊥,‎ 试求函数关系式k=f(t) ;‎ ‎(2) 据(1)的结论,讨论关于t的方程f(t)-k=0的解的情况.‎ 解:(1)∵⊥,∴=0 即[+(t2-3) ]·(-k+t)=0. ‎ 整理后得-k+[t-k(t2-3)] + (t2-3)·=0 ‎ ‎∵=0,=4,=1,∴上式化为-4k+t(t2-3)=0,即k=t(t2-3)‎ ‎(2)讨论方程t(t2-3)-k=0的解的情况,可以看作曲线f(t)= t(t2-3)与直线y=k的交点个数. ‎ 于是f′(t)= (t2-1)= (t+1)(t-1). ‎ 令f′(t)=0,解得t1=-1,t2=1.当t变化时,f′(t)、f(t)的变化情况如下表:‎ t ‎(-∞,-1)‎ ‎-1‎ ‎(-1,1)‎ ‎1‎ ‎(1,+ ∞)‎ f′(t)‎ ‎+‎ ‎0‎ ‎-‎ ‎0‎ ‎+‎ F(t)‎ ‎↗‎ 极大值 ‎↘‎ 极小值 ‎↗‎ 当t=-1时,f(t)有极大值,f(t)极大值=.‎ 当t=1时,f(t)有极小值,f(t)极小值=-‎ 函数f(t)=t(t2-3)的图象如图13-2-1所示,‎ 可观察出:‎ ‎(1)当k>或k<-时,方程f(t)-k=0有且只有一解;‎ ‎(2)当k=或k=-时,方程f(t)-k=0有两解;‎ ‎(3) 当-<k<时,方程f(t)-k=0有三解. ‎ 题型七:导数与不等式的综合 ‎ ‎1.设在上是单调函数.‎ ‎(1)求实数的取值范围;(2)设≥1,≥1,且,求证:.‎ 解:(1) 若在上是单调递减函数,则须这样的实数a不存在.故在上不可能是单调递减函数.‎ 若在上是单调递增函数,则≤,‎ 由于.从而0
查看更多