- 2021-05-14 发布 |
- 37.5 KB |
- 21页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018版高考文科数学(北师大版)一轮文档讲义:章10-2统计图表
第2讲 统计图表、数据的数字特征、用样本估计总体 最新考纲 1.了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点;2.理解样本数据标准差的意义和作用,会计算数据标准差;3.能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想;5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题. 知 识 梳 理 1.用样本的频率分布估计总体分布 (1)频率分布表与频率分布直方图 频率分布表与频率分布直方图的绘制步骤如下: ①求极差(即一组数据中最大值与最小值的差); ②定组距与组数;③将数据分组;④列频率分布表; ⑤画频率分布直方图. (2)频率折线图 在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图. (3)茎叶图 ①茎叶图是统计中用来表示数据的一种图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数. ② 对于样本数据较少,但较为集中的一组数据:若数据是两位整数,则将十位数字作茎,个位数字作叶;若数据是三位整数,则将百位、十位数字作茎,个位数字作叶,样本数据为小数时做类似处理. 2.样本的数字特征 数字特征 定义 众数 在一组数据中,出现次数最多的数据叫作这组数据的众数 中位数 将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫作这组数据的中位数 在频率分布直方图中,中位数左边和右边的直方图的面积相等 平均数 样本数据的算术平均数,即= 方差 s2=[(x1-)2+(x2-)2+…+(xn-)2],其中s为标准差 诊 断 自 测 1.判断正误(在括号内打“√”或“×”) 精彩PPT展示 (1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( ) (2)一组数据的方差越大,说明这组数据越集中.( ) (3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.( ) (4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( ) 解析 (2)错误.方差越大,这种数据越离散. (4)错误.相同的数据叶要重复记录,故(4)错误. 答案 (1)√ (2)× (3)√ (4)× 2.(必修3P70改编)若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是( ) A.91.5和91.5 B.91.5和92 C.91和91.5 D.92和92 解析 这组数据由小到大排列为87,89,90,91,92,93,94,96, ∴中位数是=91.5, 平均数==91.5. 答案 A 3.在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的,且样本容量为80,则中间一组的频数为( ) A.0.25 B.0.5 C.20 D.16 解析 设中间一组的频数为x, 依题意有=(1-),解得x=16. 答案 D 4.(2016·江苏卷)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________. 解析 易求=(4.7+4.8+5.1+5.4+5.5)=5.1, ∴方差s2=[(-0.4)2+(-0.3)2+02+0.32+0.42]=0.1. 答案 0.1 5.(2017·合肥调研)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________. 解析 全体志愿者共有:=50(人), 所以第三组有志愿者:0.36×1×50=18(人), ∵第三组中没有疗效的有6人, ∴有疗效的有18-6=12(人). 答案 12 考点一 茎叶图及其应用 【例1】 (2014·全国Ⅱ卷)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下: (1)分别估计该市的市民对甲、乙两部门评分的中位数; (2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价. 解 (1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75. 50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为=67,所以该市的市民对乙部门评分的中位数的估计值是67. (2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为=0.1,=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16. (3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大. 规律方法 (1)茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况. (2)①作样本的茎叶图时先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理. ②根据茎叶图中数据数字特征进行分析判断考查识图能力,判断推理能力和创新应用意识;解题的关键是抓住“叶”的分布特征,准确提炼信息. 【训练1】 以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分) 已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x+y的值为________. 解析 由茎叶图及已知得x=5,又乙组数据的平均数为16.8,即=16.8,解得y=8,因此x+y=13. 答案 13 考点二 频率分布直方图(多维探究) 命题角度一 用频率分布直方图求频率、频数 【例2-1】 (2016·山东卷)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) A.56 B.60 C.120 D.140 解析 由频率分布直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140. 答案 D 命题角度二 用频率分布直方图估计总体 【例2-2】 (2016·四川卷)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……,[4,4.5]分成9组,制成了如图所示的频率分布直方图. (1)求直方图中a的值; (2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数. 解 (1)由频率分布直方图可知:月均用水量在[0,0.5)内的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02. 由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a, 解得a=0.30. (2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x吨. 因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5. 又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5. 所以2≤x<2.5. 由0.50×(x-2)=0.5-0.48,解得x=2.04. 故可估计居民月均用水量的中位数为2.04吨. 规律方法 (1)准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率和条形图混淆. (2)“命题角度二”的例题中抓住频率分布直方图中各小长方形的面积之和为1,这是解题的关键,并利用频率分布直方图可以估计总体分布. 【训练2】 (2017·佛山质检)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图. (1)求直方图中x的值; (2)求月平均用电量的众数和中位数; (3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则从月平均用电量在[220,240)内的用户中应抽取多少户? 解 (1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5, ∴直方图中x的值为0.007 5. (2)月平均用电量的众数是=230. ∵(0.002+0.009 5+0.011)×20=0.45<0.5, ∴月平均用电量的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)× 20+0.012 5×(a-220)=0.5,解得a=224,即中位数为224. (3)月平均用电量在[220,240)内的用户有0.012 5×20×100=25(户),同理可求月平均用电量为[240,260),[260,280),[280,300]的用户分别有15户、10户、5户,故抽样比为=. ∴从月平均用电量在[220,240)内的用户中应抽取25×=5(户). 考点三 样本的数字特征 【例3】 (2017·南昌一中检测)某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(,),(a,)(a,b),(a,),(,b),(a,b).其中a,分别表示甲组研发成功和失败;b,分别表示乙组研发成功和失败. (1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平; (2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率. 解 (1)甲组研发新产品的成绩为 1,1,1,0,0,1,1,1,0,0,1,1,1,0,1, 其平均数为甲==. 方差s==. 乙组研发新产品的成绩为 1,0,1,1,0,1,1,0,1,0,0,1,0,1,1, 其平均数为乙==. 方差s==. 因为甲>乙,s查看更多