- 2021-05-14 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018版高考数学(理)(苏教版,江苏专用)大一轮教师文档讲义:第十四章14-4第1课时绝对值不等式
第1课时 绝对值不等式 1.绝对值不等式的解法 (1)含绝对值的不等式|x|a的解集: 不等式 a>0 a=0 a<0 |x|a (-∞,-a)∪ (a,+∞) (-∞,0)∪ (0,+∞) R (2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法: ①|ax+b|≤c⇔-c≤ax+b≤c; ②|ax+b|≥c⇔ax+b≥c或ax+b≤-c; (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法: ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想; ③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 2.含有绝对值的不等式的性质 (1)如果a,b是实数,则|a|-|b|≤|a±b|≤|a|+|b|,当且仅当ab≥0时,等号成立. (2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立. 1.(2015·山东改编)解不等式|x-1|-|x-5|<2的解集. 解 ①当x≤1时,原不等式可化为1-x-(5-x)<2, ∴-4<2,不等式恒成立,∴x≤1. ②当1查看更多