- 2021-05-14 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
全国高考数学卷安徽理含答案
2007年普通高等学校招生全国统一考试(安徽卷) 数 学(理科) 一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列函数中,反函数是其自身的函数为( ) A. B. C. D. 2.设均为直线,其中在平面内,则“”是“且”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 3.若对任意,不等式恒成立,则实数的取值范围是( ) A. B. C. D. 4.若为实数,,则等于( ) A. B. C. D. 5.若,则的元素个数为( ) A.0 B.1 C.2 D.3 6.函数的图象为, ①图象关于直线对称; ②函数在区间内是增函数; ③由的图象向右平移个单位长度可以得到图象. 以上三个论断中,正确论断的个数是( ) A.0 B.1 C.2 D.3 7.如果点在平面区域上,点在曲线上,那么的最小值为( ) A. B. C. D. 8.半径为1的球面上的四点是正四面体的顶点,则与两点间的球面距离为( ) A y B O x A. B. C. D. 9.如图,和分别是双曲线 的两个焦点,和是以为圆心,以为半径的圆与 该双曲线左支的两个交点,且是等边三角形,则双 曲线的离心率为( ) 第9题图 A. B. C. D. 10.以表示标准正态总体在区间内取值的概率,若随机变量服从正态分布,则概率等于( ) A. B. C. D. 11.定义在上的函数既是奇函数,又是周期函数,是它的一个正周期.若将方程在闭区间上的根的个数记为,则可能为( ) A.0 B.1 C.3 D.5 2007年普通高等学校招生全国统一考试(安徽卷) 数 学(理科) 第Ⅱ卷(非选择题 共95分) 注意事项: 请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效. 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. 12.若的展开式中含有常数项,则最小的正整数等于 . y x O 13.在四面体中,为的中点,为的中点,则 (用表示). 14.如图,抛物线与轴的正半轴交于点, 将线段的等分点从左至右依次记为, 过这些分点分别作轴的垂线,与抛物线的交点依次为 ,从而得到个直角三角形 .当时,这些三角形 第14题图 的面积之和的极限为 . 15.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号). ①矩形; ②不是矩形的平行四边形; ③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体. 三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知为的最小正周期,,且.求的值. A B C D 17.(本小题满分14分) 如图,在六面体中,四边形是边长为 2的正方形,四边形是边长为1的正方形,平面 ,平面,. (Ⅰ)求证:与共面,与共面. (Ⅱ)求证:平面平面; (Ⅲ)求二面角的大小(用反三角函数值表示). 18.(本小题满分14分) 设,. (Ⅰ)令,讨论在内的单调性并求极值; (Ⅱ)求证:当时,恒有. 19.(本小题满分12分) x y B A O a C D 如图,曲线的方程为.以原点为圆心.以为半径的圆分别与曲线和轴的正半轴相交于点与点.直线与轴相交于点. (Ⅰ)求点的横坐标与点的横坐标 的关系式 (Ⅱ)设曲线上点的横坐标为, 求证:直线的斜率为定值. 第19题图 20.(本小题满分13分) 在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子,6只果蝇和2 只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以表示笼内还剩下的果蝇的只数. (Ⅰ)写出的分布列(不要求写出计算过程); (Ⅱ)求数学期望; (Ⅲ)求概率. 21.(本小题满分14分) 某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为,以后每年交纳的数目均比上一年增加,因此,历年所交纳的储备金数目是一个公差为的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为,那么,在第年末,第一年所交纳的储备金就变为,第二年所交纳的储备金就变为,.以表示到第年末所累计的储备金总额. (Ⅰ)写出与的递推关系式; (Ⅱ)求证:,其中是一个等比数列,是一个等差数列. 2007年普通高等学校招生全国统一考试(安徽卷) 数学(理科)试题参考答案 一、选择题:本题考查基本知识和基本运算.每小题5分,满分55分. 1.D 2.A 3.B 4.B 5.C 6.C 7.A 8.C 9.D 10.B 11.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.7 13. 14. 15.①③④⑤ 三、解答题 16.本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力.本小题满分12分. 解:因为为的最小正周期,故. 因,又. 故. 由于,所以 . 17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分. 解法1(向量法): 以为原点,以所在直线分别为轴,轴,轴建立空间直角坐标系如图, 则有. A B C D (Ⅰ)证明: . . 与平行,与平行, 于是与共面,与共面. (Ⅱ)证明:, , ,. 与是平面内的两条相交直线. 平面. 又平面过. 平面平面. (Ⅲ)解:. 设为平面的法向量, ,. 于是,取,则,. 设为平面的法向量, ,. 于是,取,则,. . 二面角的大小为. 解法2(综合法): (Ⅰ)证明:平面,平面. ,,平面平面. A B C D 于是,. 设分别为的中点,连结, 有. , 于是. 由,得, 故,与共面. 过点作平面于点, 则,连结, 于是,,. ,. ,. 所以点在上,故与共面. (Ⅱ)证明:平面,, 又(正方形的对角线互相垂直), 与是平面内的两条相交直线, 平面. 又平面过,平面平面. (Ⅲ)解:直线是直线在平面上的射影,, 根据三垂线定理,有. 过点在平面内作于,连结, 则平面, 于是, 所以,是二面角的一个平面角. 根据勾股定理,有. ,有,,,. ,, 二面角的大小为. 18.本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力.本小题满分14分. (Ⅰ)解:根据求导法则有, 故, 于是, 列表如下: 2 0 极小值 故知在内是减函数,在内是增函数,所以,在处取得极小值. (Ⅱ)证明:由知,的极小值. 于是由上表知,对一切,恒有. 从而当时,恒有,故在内单调增加. 所以当时,,即. 故当时,恒有. 19.本小题综合考查平面解析几何知识,主要涉及平面直角坐标系中的两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系,考查运算能力与思维能力、综合分析问题的能力.本小题满分12分. x y B A O a C D 解:(Ⅰ)由题意知,. 因为,所以. 由于,故有. (1) 由点的坐标知, 直线的方程为. 又因点在直线上,故有, 将(1)代入上式,得, 解得. (Ⅱ)因为,所以直线的斜率为 . 所以直线的斜率为定值. 20.本小题主要考查等可能场合下的事件概率的计算、离散型随机变量的分布列、数学期望的概念及其计算,考查分析问题及解决实际问题的能力.本小题满分13分. 解:(Ⅰ)的分布列为: 0 1 2 3 4 5 6 (Ⅱ)数学期望为. (Ⅲ)所求的概率为. 21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分. 解:(Ⅰ)我们有. (Ⅱ),对反复使用上述关系式,得 , ① 在①式两端同乘,得 ② ②①,得 . 即. 如果记,, 则. 其中是以为首项,以为公比的等比数列;是以为首项,为公差的等差数列.查看更多