高考数学分类汇编专题十四不等式选讲

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学分类汇编专题十四不等式选讲

不等式选讲 ‎1.(2017·新课标全国卷Ⅰ)已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.‎ ‎(1)当a=1时,求不等式f(x)≥g(x)的解集;‎ ‎(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.‎ ‎2.(2016·新课标全国卷Ⅲ,24)已知函数f(x)=|2x-a|+a.‎ ‎(1)当a=2时,求不等式f(x)≤6的解集;‎ ‎(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求a的取值范围.‎ ‎]‎ ‎3.【2018全国一卷23】已知.‎ ‎(1)当时,求不等式的解集;‎ ‎(2)若时不等式成立,求的取值范围.‎ ‎4.【2018全国二卷23】设函数.‎ ‎(1)当时,求不等式的解集;‎ ‎(2)若,求的取值范围.‎ ‎5.【2018全国三卷23】设函数.‎ ‎(1)画出的图像;‎ ‎(2)当,,求的最小值.‎ ‎6.【2018江苏卷21D】若x,y,z为实数,且x+2y+2z=6,求的最小值.‎ 参考答案 解析:(1)当a=1时,不等式f(x)≥g(x)等价于 x2-x+|x+1|+|x-1|-4≤0.①‎ 当x<-1时,①式化为x2-3x-4≤0,无解;‎ 当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;‎ 当x>1时,①式化为x2+x-4≤0,‎ 从而1<x≤.‎ 所以f(x)≥g(x)的解集为x-1≤x≤.‎ ‎(2)当x∈[-1,1]时,g(x)=2,‎ 所以f(x)≥g(x)的解集包含[-1,1],等价于当x∈[-1,1]时f(x)≥2.‎ 又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f(1)≥2,得-1≤a≤1.‎ 所以a的取值范围为[-1,1].‎ 解析:(1)当a=2时,f(x)=|2x-2|+2.‎ 解不等式|2x-2|+2≤6得-1≤x≤3.‎ 因此f(x)≤6的解集为{x|-1≤x≤3}.‎ ‎(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a,‎ 所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3.①‎ 当a≤1时,①等价于1-a+a≥3,无解.‎ 当a>1时,①等价于a-1+a≥3,解得a≥2.‎ 所以a的取值范围是[2,+∞).‎ ‎1.解: (1)当时,,即 故不等式的解集为.‎ ‎(2)当时成立等价于当时成立.‎ 若,则当时;‎ 若,的解集为,所以,故.‎ 综上,的取值范围为.‎ ‎2.解:(1)当时,‎ 可得的解集为.‎ ‎(2)等价于.‎ 而,且当时等号成立.故等价于.‎ 由可得或,所以的取值范围是.‎ ‎3.解:(1)的图像如图所示.‎ ‎(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为.‎ ‎4.证明:由柯西不等式,得.‎ 因为,所以,‎ 当且仅当时,不等式取等号,此时,‎ 所以的最小值为4.‎
查看更多

相关文章

您可能关注的文档