高考椭圆大题专题分类
www.ks5u.com
高考椭圆大题专题分类
一、求椭圆的方程以及面积
1.已知椭圆G:+=1(a>b>0)的离心率为,右焦点为(2,0).斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(1)求椭圆G的方程;
(2)求△PAB的面积.
解析 (1)由已知得c=2,=.解得a=2,
又b2=a2-c2=4.
所以椭圆G的方程为+=1.
(2)设直线l的方程为y=x+m.
由得4x2+6mx+3m2-12=0.①
设A、B的坐标分别为(x1,y1),(x2,y2)(x1
b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2.
(1)求椭圆C的焦距;
(2)如果=2,求椭圆C的方程.
解 (1)设椭圆C的焦距为2c,由已知可得F1到直线l的距离c=2,故c=2.
所以椭圆C的焦距为4.
(2)设A(x1,y1),B(x2,y2),由=2及l的倾斜角为60°,知y1<0,y2>0,
直线l的方程为y=(x-2).
由消去x,
整理得(3a2+b2)y2+4b2y-3b4=0.
解得y1=,y2=.
因为=2,所以-y1=2y2,
即=2·,解得a=3.
而a2-b2=4,所以b2=5.
故椭圆C的方程为+=1.
四、求椭圆方程及定点在椭圆上
1. 如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.
(1)解 由题意知,b==.
因为离心率e==,所以= =.
所以a=2.
所以椭圆C的方程为+=1.
(2)证明 由题意可设M,N的坐标分别为(x0,y0),(-x0,y0),
则直线PM的方程为y=x+1, ①
直线QN的方程为y=x+2. ②
法一 联立①②解得x=,y=,
即T.由+=1,可得x=8-4y.
因为2+2=
====1,
所以点T的坐标满足椭圆C的方程,即点T在椭圆C上.
法二 设T(x,y),联立①②解得x0=,y0=.
因为+=1,所以2+2=1.
整理得+=(2y-3)2,
所以+-12y+8=4y2-12y+9,即+=1.
所以点T坐标满足椭圆C的方程,即点T在椭圆C上.
五、求椭圆的离心率及椭圆与直线的关系
1.如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.
解 (1) 如图,设所求椭圆的标准方程为+=1(a>b>0),右焦点为F2(c,0).
因△AB1B2是直角三角形,
又|AB1|=|AB2|,
故∠B1AB2为直角,
因此|OA|=|OB2|,得b=.
结合c2=a2-b2得4b2=a2-b2,
故a2=5b2,c2=4b2,所以离心率e==.
在Rt△AB1B2中,OA⊥B1B2,
故S△AB1B2=·|B1B2|·|OA|=|OB2|·|OA|=·b=b2.由题设条件S△AB1B2=4得b2=4,从而a2=5b2=20.因此所求椭圆的标准方程为:+=1.
(2)由(1)知B1(-2,0),B2(2,0).由题意知直线l的倾斜角不为0,故可设直线l的方程为x=my-2.代入椭圆方程得(m2+5)y2-4my-16=0.
设P(x1,y1),Q(x2,y2),则y1,y2是上面方程的两根,
因此y1+y2=,y1·y2=-,
又=(x1-2,y1),=(x2-2,y2),
所以·=(x1-2)(x2-2)+y1y2
=(my1-4)(my2-4)+y1y2=(m2+1)y1y2-4m(y1+y2)+16
=--+16=-,
由PB2⊥QB2,得·=0,
即16m2-64=0,解得m=±2.
所以满足条件的直线有两条,其方程分别为x+2y+2=0和x-2y+2=0.