2018版高考数学(浙江·文理通用)大一轮教师文档讲义:第八章8-3空间点、直线、平面之间的位置关系

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018版高考数学(浙江·文理通用)大一轮教师文档讲义:第八章8-3空间点、直线、平面之间的位置关系

‎1.四个公理 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.‎ 公理2:过不在一条直线上的三点,有且只有一个平面.‎ 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.‎ 公理4:平行于同一条直线的两条直线互相平行.‎ ‎2.直线与直线的位置关系 ‎(1)位置关系的分类 ‎(2)异面直线所成的角 ‎①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).‎ ‎②范围:.‎ ‎3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.‎ ‎4.平面与平面的位置关系有平行、相交两种情况.‎ ‎5.等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.‎ ‎【知识拓展】‎ ‎1.唯一性定理 ‎(1)过直线外一点有且只有一条直线与已知直线平行.‎ ‎(2)过直线外一点有且只有一个平面与已知直线垂直.‎ ‎(3)过平面外一点有且只有一个平面与已知平面平行.‎ ‎(4)过平面外一点有且只有一条直线与已知平面垂直.‎ ‎2.异面直线的判定定理 经过平面内一点的直线与平面内不经过该点的直线互为异面直线.‎ ‎【思考辨析】‎ 判断下列结论是否正确(请在括号中打“√”或“×”)‎ ‎(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( √ )‎ ‎(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( × )‎ ‎(3)两个平面ABC与DBC相交于线段BC.( × )‎ ‎(4)经过两条相交直线,有且只有一个平面.( √ )‎ ‎(5)没有公共点的两条直线是异面直线.( × )‎ ‎1.下列命题正确的个数为(  )‎ ‎①梯形可以确定一个平面;‎ ‎②若两条直线和第三条直线所成的角相等,则这两条直线平行;‎ ‎③两两相交的三条直线最多可以确定三个平面;‎ ‎④如果两个平面有三个公共点,则这两个平面重合.‎ A.0 B.1 C.2 D.3‎ 答案 C 解析 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.‎ ‎2.(2016·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则(  )‎ A.m∥l B.m∥n C.n⊥l D.m⊥n 答案 C 解析 由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.‎ ‎3.已知a,b是异面直线,直线c平行于直线a,那么c与b(  )‎ A.一定是异面直线 B.一定是相交直线 C.不可能是平行直线 D.不可能是相交直线 答案 C 解析 由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a、b为异面直线相矛盾.‎ ‎4. (教材改编)如图所示,已知在长方体ABCD-EFGH中,AB=2,AD=2,AE=2,则BC和EG所成角的大小是______,AE和BG所成角的大小是________.‎ 答案 45° 60°‎ 解析 ∵BC与EG所成的角等于EG与FG所成的角即∠EGF,tan∠EGF===1,∴∠EGF=45°,‎ ‎∵AE与BG所成的角等于BF与BG所成的角即∠GBF,tan∠GBF===,∴∠GBF=60°.‎ 题型一 平面基本性质的应用 例1 (1)(2016·山东)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 A 解析 若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.‎ ‎(2)已知,空间四边形ABCD(如图所示),E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且CG=BC,CH=DC.求证:‎ ‎①E、F、G、H四点共面;‎ ‎②三直线FH、EG、AC共点.‎ 证明 ①连接EF、GH,如图所示,‎ ‎∵E、F分别是AB、AD的中点,‎ ‎∴EF∥BD.‎ 又∵CG=BC,CH=DC,‎ ‎∴GH∥BD,∴EF∥GH,‎ ‎∴E、F、G、H四点共面.‎ ‎②易知FH与直线AC不平行,但共面,‎ ‎∴设FH∩AC=M,∴M∈平面EFHG,M∈平面ABC.‎ 又∵平面EFHG∩平面ABC=EG,‎ ‎∴M∈EG,∴FH、EG、AC共点.‎ 思维升华 共面、共线、共点问题的证明 ‎(1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②‎ 将所有条件分为两部分,然后分别确定平面,再证两平面重合.‎ ‎(2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.‎ ‎(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.‎ ‎ 如图,正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:‎ ‎ (1)E、C、D1、F四点共面;‎ ‎(2)CE,D1F,DA三线共点.‎ 证明 (1)如图,连接EF,CD1,A1B.‎ ‎∵E,F分别是AB,AA1的中点,∴EF∥A1B.‎ 又A1B∥D1C,∴EF∥CD1,‎ ‎∴E、C、D1、F四点共面.‎ ‎(2)∵EF∥CD1,EF
查看更多

相关文章