全国高考文科数学试卷及答案全国卷
2016年全国高考新课标1卷文科数学试题
第Ⅰ卷
一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( )
A.{1,3} B.{3,5} C.{5,7} D.{1,7}
2.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=( )
A.-3 B.-2 C.2 D. 3
3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )
A. B. C. D.
4.ΔABC的内角A,B,C的对边分别为a,b,c.已知,
则b=( )
A. B. C.2 D.3
5.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的
,则该椭圆的离心率为( )
A. B. C. D.
6.若将函数y=2sin (2x+)的图像向右平移个周期后,所得图像对应的函数为
( )
A.y=2sin(2x+) B.y=2sin(2x+) C.y=2sin(2x–) D.y=2sin(2x–)
7.如图,某几何体的三视图是三个半径相等的圆及每个
圆中两条相互垂直的半径.若该几何体的体积是,
则它的表面积是( )
A.17π B.18π C.20π D.28π
8.若a>b>0,0
cb
y
x
y
2
O
-2
1
C
x
2
O
-2
1
B
y
x
2
O
-2
1
A
x
2
O
-2
1
D
y
9.函数y=2x2–e|x|在[–2,2]的图像大致为( )
开始
x2+y2≥36?
是
结束
输出x,y
否
n=n+1
输入x,y,n
10.执行右面的程序框图,如果输入的x=0,y=1,n=1,
则输出x,y的值满足( )
A.y=2x B.y=3x
C.y=4x D.y=5x
11.平面α过正方体ABCD-A1B1C1D1的顶点A,
α//平面CB1D1,α∩平面ABCD=m,
α∩平面ABB1A1=n,则m,n所成角的正弦值为( )
A. B. C. D.
12.若函数在(-∞,+∞)单调递增,则a的取值范围是( )
A.[-1,1] B.[-1,] C.[-,] D.[-1,-]
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答.
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.
13.设向量a=(x,x+1),b=(1,2),且a⊥b,则x= .
14.已知θ是第四象限角,且sin(θ+)=,则tan(θ-)= .
15.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=,则圆C的面积为 .
16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为 元.
三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.
17.(本题满分12分)
已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.
(Ⅰ)求{an}的通项公式; (Ⅱ)求{bn}的前n项和.
18.(本题满分12分)
如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,
连接PE并延长交AB于点G.
B
E
G
P
D
C
A
(Ⅰ)证明G是AB的中点;
(Ⅱ)在答题卡第(18)题图中作出点E在平面PAC
内的正投影F(说明作法及理由),并求四面体PDEF的体积.
19.(本小题满分12分)
某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.
(Ⅰ)若n=19,求y与x的函数解析式;
(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;
(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
20.(本小题满分12分)
在直角坐标系xoy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.
(Ⅰ)求; (Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.
21.(本小题满分12分)
已知函数f(x)=(x -2)ex+a(x -1)2.
(Ⅰ)讨论f(x)的单调性; (Ⅱ)若有两个零点,求a的取值范围.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
22.(本小题满分10分)选修4-1:几何证明选讲
如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,OA为半径作圆.
(Ⅰ)证明:直线AB与⊙O相切;
(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.
23.(本小题满分10分)选修4—4:坐标系与参数方程
在直线坐标系xoy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.
(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.
24.(本小题满分10分),选修4—5:不等式选讲
已知函数f(x)=| x+1| -|2x-3|.
(Ⅰ)在答题卡第24题图中画出y=f(x)的图像;
(Ⅱ)求不等式| f(x)|>1的解集.
2016年全国高考新课标1卷文科数学试题参考答案
一、选择题,本大题共12小题,每小题5分,共60分.
1B 2A 3C 4D 5B 6D 7A 8B 9D 10C 11A 12C
【12题解析】
二、填空题:本大题共4小题,每小题5分,共20分.
13. 14. 15.4π 16.216000
三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.
17.解:(Ⅰ)依题a1b2+b2=b1,b1=1,b2=,解得a1=2 …2分
通项公式为 an=2+3(n-1)=3n-1 …6分
(Ⅱ)由(Ⅰ)知3nbn+1=nbn,bn+1=bn,所以{bn}是公比为的等比数列.…9分
B
E
G
P
F
D
C
A
所以{bn}的前n项和Sn= …12分
18.(Ⅰ)证明:PD⊥平面ABC,∴PD⊥AB.
又DE⊥平面PAB,∴DE⊥AB.∴AB⊥平面PDE. …3分
又PG Ì平面PDE,∴AB⊥PG.依题PA=PB,∴G是AB的中点.…6分
(Ⅱ)解:在平面PAB内作EF⊥PA(或EF// PB)垂足为F,
则F是点E在平面PAC内的正投影. …7分
理由如下:∵PC⊥PA,PC⊥PB,∴ PC⊥平面PAB. ∴EF ⊥PC
作EF⊥PA,∴EF⊥平面PAC.即F是点E在平面PAC内的正投影.…9分
连接CG,依题D是正ΔABC的重心,∴D在中线CG上,且CD=2DG.
易知DE// PC,PC=PB=PA= 6,∴DE=2,PE=.
则在等腰直角ΔPEF中,PF=EF=2,∴ΔPEF的面积S=2.
所以四面体PDEF的体积. …12分
19.解:(Ⅰ)当x≤19时,y=3800;当x>19时,y=3800+500(x-19)=500x-5700.
所以y与x的函数解析式为 …3分
(Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n的最小值为19. …6分
(Ⅲ)若每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的
平均数为(3800×70+4300×20+4800×10)=4000. …9分
若每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的
平均数为(4000×90+4500×10)=4050. …11分
比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分
20.解:(Ⅰ)依题M(0, t),P(, t). 所以N(, t),ON的方程为.
联立y2=2px,消去x整理得y2=2ty. 解得y1=0,y2=2t. …4分
所以H(,2t). 所以N是OH的中点,所以=2. …6分
(Ⅱ)直线MH的方程为,联立y2=2px,消去x整理得y2-4ty+4t2=0.
解得y1=y2=2t. 即直线MH与C只有一个交点H.
所以除H以外,直线MH与C没有其它公共点. …12分
21.解:(Ⅰ) f '(x)=(x -1)ex+a(2x -2)=(x -1)(ex+2a). x∈R …2分
(1)当a≥0时,在(-∞,1)上,f '(x)<0,f(x)单调递减;
在(1,+∞)上,f '(x)>0,f(x)单调递增. …3分
(2)当a<0时,令f '(x)=0,解得x =1或x=ln(-2a).
①若a=,ln(-2a) =1,f '(x)≥0恒成立,所以f(x)在(-∞,+ ∞)上单调递增.
②若a>,ln(-2a)<1,在(ln(-2a),1)上,f '(x)<0,f(x)单调递减;
在(-∞, ln(-2a))与(1,+∞)上,f '(x)>0,f(x)单调递增.
③若a<,ln(-2a)>1,在(1,ln(-2a))上,f '(x)<0,f(x)单调递减;
在(-∞,1)与(ln(-2a),+∞)上,f '(x)>0,f(x)单调递增.…7分
(Ⅱ) (1)当a=0时,f(x)=(x -2)ex只有一个零点,不合要求. …8分
(2)当a>0时,由(Ⅰ)知f(x)在(-∞,1)上单调递减;在(1,+∞)上单调递增.
最小值f(1)=-e<0,又f(2)= a>0,若取b<0且b,所以f(x)有两个零点. …10分
(3)当a<0时,在(-∞,1]上,f(x)<0恒成立;若a≥,由(Ⅰ)知f(x)在(1,+∞)上单调递增,不存在两个零点.若a<,f(x)在(1,ln(-2a))上单调递减;在(ln(-2a),+∞)上单调递增,也不存在两个零点.
综上a的取值范围是(0,1). …12分