- 2021-05-13 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
哈尔滨市第三中学第二次高考模拟考试文科数学试题及答案
2016年哈尔滨市第三中学第二次高考模拟考试 数学试卷(文史类) 考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟. (1)答题前,考生先将自己的姓名、准考证号码填写清楚; (2)选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚; (3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效; (4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀. 第 I卷 (选择题, 共60分) 一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设集合,,则 A. B. C. D. 2. 设命题:若,,则;命题:若函数 ,则对任意都有成立.在命题①; ②; ③; ④中,真命题是 A.①③ B. ①④ C. ②③ D. ②④ 3.已知复数,则 A. B. C. D. 4.口袋中有四个小球,其中一个黑球三个白球,从中随机取出两个球,则取到的两个球同色的概率为 A. B. C. D. 5.已知,满足约束条件则目标函数的最大值为 A. B. C. D. P 6.已知函数()的图象过点,如图,则的值为 A. B. C.或 D.或 7.在平面直角坐标系中,双曲线过点,且其两条渐近线的方程分别为和,则双曲线的标准方程为 A. B. ? C. 或 D. 8.如图,给出的是求……的值的一个 程序框图,则判断框内填入的条件是 A. B. C. D. 3 9.一个空间几何体的三视图如图所示,则这个几何体的表面积为 A. B. C. D. 3 3 10. 已知数列为等差数列,且公差,数列为等比数列,若,,则 A. B. C. D.与大小无法确定 11.等腰直角中,,,在轴上,有一个半径为的圆沿轴向滚动,并沿的表面滚过,则圆心的大致轨迹是(虚线为各段弧 所在圆的半径) A. B. C. D. 12.已知函数,若函数恰有一个零点,则的取值范围是 A. B. C. D. 2016哈尔滨市第三中学第二次高考模拟考试 数学试卷(文史类) 第Ⅱ卷 (非选择题, 共90分) 二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.) 13.已知圆,则过点的圆的切线方程为 . 14.数列中,,当时,,则数列的通项公式为 . 15.点在的边所在直线上,且满足(),则在平面直角坐标系中,动点的轨迹的普通方程为 . 16.四棱锥的底面是边长为的正方形,高为1,其外接球半径为,则正方形的中心与点之间的距离为 . 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分) 已知 (Ⅰ)若,求的值域; (Ⅱ)在中,为边所对的内角若,,求的最大值. 18.(本小题满分12分) 某汽车公司为了考查某4S店的服务态度,对到店维修保养的客户进行回访调查,每个用户在到此店维修或保养后可以对该店进行打分,最高分为10分.上个月公司对该4S店的100位到店维修保养的客户进行了调查,将打分的客户按所打分值分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到频率分布直方图如图所示. (Ⅰ)分别求第四、五组的频率; (Ⅱ)该公司在第二、三组客户中按分层抽样的方法抽取6名客户进行深入调查,之 后将从这6人中随机抽取2人进行物质奖励,求得到奖励的人来自不同组的概率. 19.(本小题满分12分) 棱长为1的正方体中,沿平面将正方体分成两部分,其中一部分如图所示,过直线的平面与线段交于点. (Ⅰ)当与重合时,求证:; (Ⅱ)当平面平面时,求平面分几何体所得两部分体积之比. 20.(本小题满分12分) 已知抛物线,过其焦点作斜率为1的直线交抛物线C于M、N两点,且. (Ⅰ)求抛物线C的方程; (Ⅱ)已知动圆P的圆心在抛物线C上,且过定点D(0,4),若动圆P与x轴交于A、B两点,且,求的最小值. 21.(本小题满分12分) 已知函数,函数 ,其中为大于零的常数. (Ⅰ)求函数的单调区间; (Ⅱ)求证:. 22.(本小题满分10分)选修4-1:几何证明选讲 A B C D P Q 等腰梯形中,∥,、交于点,平分,为梯形外接圆的切线,交的延长线于点. (Ⅰ)求证:; (Ⅱ)若,,,求的长. 23.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,曲线的参数方程为 (为参数), 在以为极点,轴的正半轴为极轴的极坐标系中,曲线的方程为. (Ⅰ)求曲线、的直角坐标方程; (Ⅱ)若、分别为曲线、上的任意点,求的最小值. 24.(本小题满分10分)选修4-5:不等式选讲 设函数. (Ⅰ)求不等式的解集; (Ⅱ)若,不等式恒成立,求实数a的取值范围. 2016年哈尔滨市第三中学第二次高考模拟考试 数学试卷(文史类)答案 一、选择题 DDAB CABB BCDB 二、填空题 13. 14. 15. 16. 17.(Ⅰ), -------------3分 ,的值域为;-------------6分 (Ⅱ),,, -------------9分 , . 的最大值为. -------------12分 18.解:(1)由直方图知,第四组的频率为,第五组的频率为所以第四、五组的频率分别为和. ………………………4分 (2) 由直方图知,第二、三组客户人数分别为10人和20人,所以抽出的6人中,第二组有2人,设为A,B,第三组有4人,设为a,b,c,d. 从中随机抽取2人的所有情况如下: AB,Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd,ab,ac,ad,bc,bd,cd共15种.…8分 其中,两人来自不同组的情况共有8种, ………………………10分 所以,得到奖励的人来自不同组的概率为. ………………………12分 19.(Ⅰ)连接,在正方形中,, 正方体中,平面, 平面,,平面, ,即;-------------4分 (Ⅱ)当为中点时, A1A1 AA M(M) B1B1 C1C1 CC BB N P 取、中点分别为、,链接、、, ,且, 四边形为平行四边形,, 平面平面,, 平面,平面, 平面平面.-------------8分 设,, , .-------------12分 20. 解:(1) 设抛物线的焦点为,则直线, 由,得 ………………………2分 ,, , ………………………4分 抛物线的方程为 ………………………5分 (2) 设动圆圆心,则, 且圆, 令,整理得:, 解得:, ………………………7分 ,…………9分 当时,, 当时,,,, , 所以的最小值为. ………………………12分 21.(1)解:,----------------------------------------------------------------1分 令得,则在上单调递增; 令得,则在上单调递减。---------------------3分 (2).令,---------4分 则, 令, 则,故在上单调递增。-------------------------6分 而,,故存在,使得, 即。---------------------------------------------------------------------------8分 则时,,故;时,,故。 则在上单调递减,在上单调递增,------------------------------------10分 故 。 故。--------------------------------------------------------------12分 22. (1) 为圆的切线,平分 为圆的切线.-------------6分 (2) , .-------------12分 23.(1) .-------------6分 (2)设,则, 当且仅当时.-------------12分 24.(1) 或.-------------6分 (2)当时, ,原式恒成立; 当时,原式等价转换为恒成立,即. ,当且仅当即时取等, .-------------12分查看更多