高考全等三角形经典题型50题(含答案)
全等三角形证明经典50题(含答案)
1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
A
D
B
C
延长AD到E,使DE=AD,
则三角形ADC全等于三角形EBD
即BE=AC=2 在三角形ABE中,AB-BE
BC时,E点是射线AB,DC的交点)。
则:
△AED是等腰三角形。
所以:AE=DE
而AB=CD
所以:BE=CE (等量加等量,或等量减等量)
所以:△BEC是等腰三角形
所以:角B=角C.
15. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB三角形ADC全等于三角形ABC.
所以BC等于DC,角3等于角4,EC=EC
三角形DEC全等于三角形BEC
所以∠5=∠6
34.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.
因为D,C在AF上且AD=CF
所以AC=DF
又因为AB平行DE,BC平行EF
所以角A+角EDF,角BCA=角F(两直线平行,内错角相等)
然后SSA(角角边)三角形全等
A
C
B
D
E
F
35.已知:如图,AB=AC,BD^AC,CE^AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.
证明:因为 AB=AC,
所以 ∠EBC=∠DCB
因为 BD⊥AC,CE⊥AB
所以 ∠BEC=∠CDB
BC=CB (公共边)
则有 三角形EBC全等于三角形DCB
所以 BE=CD
36、 如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。
A
E
B
D
C
F
求证:DE=DF.
AAS证△ADE≌△ADF
D
C
B
A
E
37.已知:如图, ACBC于C , DEAC于E , ADAB于A , BC =AE.若AB = 5 ,求AD 的长?
角C=角E=90度
角B=角EAD=90度-角BAC
BC=AE
△ABC≌△DAE
AD=AB=5
38.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。求证:MB=MC
证明∵AB=AC
∴△ABC是等腰三角形
∴∠B=∠C
又∵ME=MF,△BEM和△CEM是直角三角形
∴△BEM全等于△CEM
∴MB=MC
39.如图,给出五个等量关系:① ② ③ ④ ⑤.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.
A
B
C
D
E
已知:
求证:
证明:
已知1,2
求证4
因为AD=BC AC=BD,在四边形ADBC中,连AB
所以△ADB全等于△BCA
所以角D=角C
以4,5为条件,1为结论。
即:在四边形ABCD中,∠D=∠C,∠A=∠B,求证:AD=BC
因为 ∠A+∠B+∠C+∠D=360
∠D=∠C,∠A=∠B,
所以 2(∠A+∠D)=360°,
∠A+∠D=180°,
所以 AB//DC
40.在△ABC中,,,直线经过点,且于,于.(1)当直线绕点旋转到图1的位置时,求证: ①≌;②;
(2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
(1) 证明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE.
在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB,
∴Rt△ADC≌Rt△CEB(AAS),
∴AD=CE,DC=BE,
∴DE=DC+CE=BE+AD;
(2)不成立,证明:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB,
∴△ADC≌△CEB(AAS),
∴AD=CE,DC=BE,
∴DE=CE-CD=AD-BE;
41.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF
A
E
B
M
C
F
(1) 证明;因为AE垂直AB
所以角EAB=角EAC+角CAB=90度
因为AF垂直AC
所以角CAF=角CAB+角BAF=90度
所以角EAC=角BAF
因为AE=AB AF=AC
所以三角形EAC和三角形FAB全等
所以EC=BF
角ECA=角F
(2) (2)延长FB与EC的延长线交于点G
因为角ECA=角F(已证)
所以角G=角CAF
因为角CAF=90度
所以EC垂直BF
42.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证:(1)AM=AN;(2)AM⊥AN。
证明:
(1)
∵BE⊥AC,CF⊥AB
∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°
∴∠ABM=∠ACN
∵BM=AC,CN=AB
∴△ABM≌△NAC
∴AM=AN
(2)
∵△ABM≌△NAC
∴∠BAM=∠N
∵∠N+∠BAN=90°
∴∠BAM+∠BAN=90°
即∠MAN=90°
∴AM⊥AN
43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF
连接BF、CE,
证明△ABF全等于△DEC(SAS),
然后通过四边形BCEF对边相等的证得平行四边形BCEF
从而求得BC平行于EF
44.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由
在AB上取点N ,使得AN=AC
∠CAE=∠EAN ,AE为公共边,所以三角形CAE全等三角形EAN
所以∠ANE=∠ACE
又AC平行BD
所以∠ACE+∠BDE=180
而∠ANE+∠ENB=180
所以∠ENB=∠BDE
∠NBE=∠EBN
BE为公共边,
所以三角形EBN全等三角形EBD
所以BD=BN
所以AB=AN+BN=AC+BD
45、(10分) 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.
证明:
∵AD是中线
∴BD=CD
∵DF=DE,∠BDE=∠CDF
∴△BDE≌△CDF
∴∠BED=∠CFD
∴BE‖CF
A
D
E
C
B
F
46、(10分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,.
求证:.
证明:∵DE⊥AC,BF⊥AC,
∴∠DEC=∠AFB=90°,
在Rt△DEC和Rt△BFA中,DE=BF,AB=CD,
∴Rt△DEC≌Rt△BFA,
∴∠C=∠A,
∴AB∥CD.
47、(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CD
【待定】
A
C
E
D
B
48、 (10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.
结论:
CE>DE。当∠AEB越小,则DE越小。
证明:
过D作AE平行线与AC交于F,连接FB
由已知条件知AFDE为平行四边形,ABEC为矩形 ,且△DFB为等腰三角形。
RT△BAE中,∠AEB为锐角,即∠AEB<90°
∵DF//AE ∴∠FDB=∠AEB<90°
△DFB中 ∠DFB=∠DBF=(180°-∠FDB)/2>45°
RT△AFB中,∠FBA=90°-∠DBF <45°
∠AFB=90°-∠FBA>45°
∴AB>AF
∵AB=CE AF=DE
∴CE>DE
49、 (10分)如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE.
A
B
E
C
D
先证明△ABC≌△BDC 的出角ABC=角DCB
在证明△ABE≌△DCE
得出AE=DE
A
B
C
D
E
F
图9
50.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.
证明:作CG平分∠ACB交AD于G
∵∠ACB=90°
∴∠ACG= ∠DCG=45°
∵∠ACB=90° AC=BC
∴∠B=∠BAC=45°
∴∠B=∠DCG=∠ACG
∵CF⊥AD
∴∠ACF+∠DCF=90°
∵∠ACF+∠CAF=90°
∴∠CAF=∠DCF
∵ AC=CB ∠ACG=∠B
∴△ACG≌△CBE
∴CG=BE
∵∠DCG=∠B CD=BD
∴△CDG ≌△BDE
∴∠ADC=∠BDE