统计概率文科高考题精选

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

统计概率文科高考题精选

‎2012年统计概率文科高考题精选 ‎(重庆15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为____________(用数字作答)‎ ‎(重庆18)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分。)‎ 甲、乙两人轮流投篮,每人每次投一球。约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束。设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响。‎ ‎(Ⅰ)求乙获胜的概率;‎ ‎(Ⅱ)求投篮结束时乙只投了2个球的概率。‎ ‎(陕西3).对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是 ( A )‎ A.46,45,56 B.46,45,53‎ C.47,45,56 D.45,47,53‎ ‎(陕西19)(本小题满分12分)‎ 假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:‎ ‎(Ⅰ)估计甲品牌产品寿命小于200小时的概率;‎ ‎(Ⅱ)这两种品牌产品中,,某个产品已使用了200小时,试估计该产品是甲品牌的概率。‎ ‎(湖南5).设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为 ‎=0.85x-85.71,则下列结论中不正确的是 A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(,)‎ C.若该大学某女生身高增加‎1cm,则其体重约增加‎0.85kg D.若该大学某女生身高为‎170cm,则可断定其体重必为‎58.79kg ‎(湖南13).图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________.‎ ‎(注:方差,其中为x1,x2,…,xn的平均数)‎ ‎(湖南17).(本小题满分12分)‎ 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.‎ 一次购物量 ‎1至4件 ‎5至8件 ‎9至12件 ‎13至16件 ‎17件及以上 顾客数(人)‎ ‎30‎ ‎25‎ ‎10‎ 结算时间(分钟/人)‎ ‎1‎ ‎1.5‎ ‎2‎ ‎2.5‎ ‎3‎ 已知这100位顾客中的一次购物量超过8件的顾客占55%.‎ ‎(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;‎ ‎(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)‎ ‎(广东13). 由正整数组成的一组数据,其平均数和中位数都是,且标准差等于,则这组数据为_________。‎ ‎(从小到大排列)‎ ‎(广东17).(本小题满分13分)某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:‎ ‎[50,60][60,70][70,80][80,90][90,100]。‎ ‎(1)求图中的值;‎ ‎(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;‎ ‎(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数。‎ ‎(天津15题)(本小题满分13分)‎ 某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。‎ ‎(I)求应从小学、中学、大学中分别抽取的学校数目。‎ ‎(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,‎ ‎ (1)列出所有可能的抽取结果;‎ ‎(2)求抽取的2所学校均为小学的概率。‎ ‎(全国18).(本小题满分12分)‎ 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。‎ ‎(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。 ‎ ‎(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:‎ 日需求量n ‎14‎ ‎15‎ ‎16‎ ‎17‎ ‎18‎ ‎19‎ ‎20‎ 频数 ‎10‎ ‎20‎ ‎16‎ ‎16‎ ‎15‎ ‎13‎ ‎10‎ ‎(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;‎ ‎(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。‎ ‎2010年统计概率文科高考题精选 ‎(10福建)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是 A.91.5和91.5 B.91.5和92 ‎ C 91和91.5 D.92和92‎ ‎(10山东6)在某项体育比赛中一位同学被评委所打出的分数如下:‎ ‎ 90 89 90 95 93 94 93‎ ‎ 去掉一个最高分和一个最低分后,所剩数据的平均分值为和方差分别为 ‎ (A) 92,2 (B) 92 ,2.8‎ ‎ (C) 93,2 (D)93,2.8‎ ‎(10辽宁13)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为 。 ‎ ‎(10江苏)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.‎ ‎(10陕西)如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为,样本标准差分别为和,则 ‎(A) >,>‎ ‎(B) <,>‎ ‎(C) >,<‎ ‎(D) <,<‎ ‎(10上海)从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为 (结果用最简分数表示)。‎ ‎(10四川)一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人。为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是( )‎ ‎(A)12,24,15,9 (B)9,12,12,7 (C)8,15,12,5 (D)8,16,10,6 ‎ ‎(10新课标14)设函数为区间上的图像是连续不断的一条曲线,且恒有,可以用随机模拟方法计算由曲线及直线,,所围成部分的面积,先产生两组每组个,区间上的均匀随机数和,由此得到V个点。再数出其中满足的点数,那么由随机模拟方法可得S的近似值为___________‎ ‎(10重庆 5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为 ‎ (A)7 (B)15 (C)25 (D)35‎ ‎(10重庆14)加工某一零件需经过三道工序,设第一、二、三道工序的次品 率分别为、、,且各道工序互不影响,则加工出来的零件的次品率为____________ .‎ ‎(10江苏)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于‎20mm。‎ ‎(10江西)有位同学参加某项选拔测试,每位同学能通过测试的概率都是,假设每位同学能否通过测试是相互独立的,则至少有一位同学通过测试的概率为 A. B. C. D.‎ ‎(10湖南)某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是 ( )‎ A. B. C. D..‎ ‎(10湖南).在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为 ‎ ‎(10福建)将容量为n的样本中的数据分成6组. 绘制频率分步直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频率之和等于27,则n等于 .‎ ‎(10湖北)一个病人服用某种新药后被治愈的概率为0.9.则服用这咱新药的4个病人中至少3人被治愈的概率为_______(用数字作答)‎ ‎(10北京)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是 ‎ (A) (B) (C) (D)‎ ‎(10北京12)从某小学随机抽取100名同学,将他们身高 ‎(单位:厘米)数据绘制成频率分布直方图(如图)。‎ 由图中数据可知a= 。若要从身高在 ‎[120,130﹚,[130,140﹚,[140,150]三组内的 学生中,用分层抽样的方法选取18人参加一项活动 ‎,则从身高在[140,150]内的学生中选取的人数 应为 。‎ ‎(10安徽10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两 个顶点连成直线,则所得的两条直线相互垂直的概率是 ‎(A) (B) (C) (D)‎ ‎(10安徽14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .‎ ‎(10安徽) 某市‎2010年4月1日—‎4月30日对空气污染指数的检测数据如下(主要污染物为可吸入颗粒物):‎ ‎ 61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,‎ ‎ 77,86,81,83,82,82,64,79,86,85,75,71,49,45,‎ ‎(Ⅰ) 完成频率分布表;‎ ‎(Ⅱ)作出频率分布直方图;‎ ‎(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。‎ 请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.‎ ‎(10安徽本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识.‎ 解:(Ⅰ) 频率分布表:‎ 分 组 频 数 频 率 ‎[41,51)‎ ‎2‎ ‎[51,61)‎ ‎1‎ ‎[61,71)‎ ‎4‎ ‎[71,81)‎ ‎6‎ ‎[81,91)‎ ‎10‎ ‎[91,101)‎ ‎5‎ ‎[101,111)‎ ‎2‎ 空气污染指数 ‎4151 61 71 81 91 101 111‎ 频率 组距 ‎ (Ⅱ)频率分布直方图:‎ ‎(Ⅲ)答对下述两条中的一条即可:‎ ‎(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的. 有26天处于良好的水平,占当月天数的. 处于优或良的天数共有28天,占当月天数的. 说明该市空气质量基本良好.‎ ‎(ii)轻微污染有2天,占当月天数的. 污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的,超过50%. 说明该市空气质量有待进一步改善.‎ ‎(10全国119)(本小题满分12分) 投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,‎ 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.‎ 各专家独立评审.‎ ‎ (I)求投到该杂志的1篇稿件被录用的概率;‎ ‎ (II)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.‎ ‎(10辽宁18)(本小题满分12分)‎ 为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随即地分成两组。每组100只,其中一组注射药物A,另一组注射药物B。下表1和表2分别是注射药物A和药物B后的实验结果。(疱疹面积单位:)‎ ‎(Ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;‎ ‎(Ⅱ)完成下面列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”。 ‎ 附:‎ ‎(10江西本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.‎ ‎ (1)求走出迷宫时恰好用了1小时的概率;‎ ‎(2)求走出迷宫的时间超过3小时的概率.‎ ‎ ‎ ‎(10湖南本小题满分12分)为了对某课题进行研究,用分层抽样的方法从三所高校A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)‎ ‎(I)求x,y; ‎ ‎(II)若从高校B、C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.‎ 高校 相关人数 抽取人数 A ‎18‎ x B ‎36‎ ‎2‎ C ‎54‎ y ‎。‎ ‎(10湖北本小题满分12分)‎ ‎ 为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示)‎ ‎(Ⅰ)在答题卡上的表格中填写相应的频率;‎ ‎(Ⅱ)估计数据落在(1.15,1.30)中的概率为多少;‎ ‎(Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数。‎ ‎(10山东本小题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为,‎ ‎ (Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于的概率;‎ ‎ (Ⅱ)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求的概率。‎ ‎(10陕西本小题满分12分)‎ 为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样检查,测得身高情况的统计图如下:‎ ‎(Ⅰ)估计该校男生的人数;‎ ‎(Ⅱ)估计该校学生身高在170~‎185cm之间的概率;‎ ‎(Ⅲ)从样本中身高在180~‎190cm之间的男生中任选2人,求至少有1人身高在185~‎190cm之间的概率.‎ ‎ (10四川本小题满分12分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶:字样即为中奖,中奖概率为,甲、乙、丙三位同学每人购买了一瓶该饮料,‎ ‎(Ⅰ)求三位同学都没的中奖的概率;‎ ‎(Ⅱ)求三位同学中至少有两位没有中奖的概率。‎ ‎(10天津本小题满分12分)‎ 有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:‎ 其中直径在区间[1.48,1.52]内的零件为一等品。‎ ‎(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;‎ ‎(Ⅱ)从一等品零件中,随机抽取2个.‎ ‎ (ⅰ)用零件的编号列出所有可能的抽取结果;‎ ‎ (ⅱ)求这2个零件直径相等的概率。‎ ‎(10新课标本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:‎ ‎ ‎ 您是否需要志愿者 男 女 需要 ‎40‎ ‎30‎ 不需要 ‎160‎ ‎270‎ ‎(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;‎ ‎(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?‎ ‎(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。‎ 附:‎ ‎ ‎ K2‎= ‎(10重庆)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求:‎ ‎(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;‎ ‎(Ⅱ)甲、乙两单位的演出序号不相邻的概率.‎ ‎(10福建本小题满分12分)设平面向量a m =(m,1),b n =(2,n),其中m,n∈{1,2,3,4}.‎ ‎(I)请列出有序数组(m,n)的所有可能结果;‎ ‎(II)记“使得a m ⊥(a m-b n)成立的(m,n)”为事件A,求事件A发生的概率.‎ ‎2011年统计概率高考题精选(文科)‎ ‎(11江苏)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差 ‎(11新课标6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ‎ A. B. ‎ ‎ C. D.‎ ‎(11辽宁14)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元.‎ ‎(11江西7)为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均值为,则( )‎ A. B.‎ C. D.‎ ‎(11江西)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:‎ 父亲身高x(cm)‎ ‎174‎ ‎176‎ ‎176‎ ‎176‎ ‎178‎ 儿子身高y(cm)‎ ‎175‎ ‎175‎ ‎176‎ ‎177‎ ‎177‎ 则y对x的线性回归方程为 A. B. C. D.‎ ‎(11上海10)课题组进行城市农空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为、、。若用分层抽样抽取个城市,则丙组中应抽取的城市数为 。‎ ‎(11四川2)有一个容量为66的样本,数据的分组及各组的频数如下:‎ ‎[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18‎ ‎[27.5,31.5) ‎1l [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3‎ 根据样本的频率分布估计,大于或等于31.5的数据约占 ‎(A) (B) (C) (D)‎ ‎(11湖南10)已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 .‎ ‎(11湖南15)已知圆直线 ‎(1)圆的圆心到直线的距离为 .‎ ‎(2) 圆上任意一点到直线的距离小于2的概率为 .‎ ‎(11湖北)有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间内的频数为 ‎ A.18 B.36‎ ‎ C.54 D.72‎ ‎(11湖北11)某市有大型超市200家、中型超市400家、小型超市1400家。为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市__________家。‎ ‎(11湖北)在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为__________。(结果用最简分数表示)‎ ‎(11广东13)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y 之间的关系:‎ 时间 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 命中率 ‎0.4‎ ‎0.5‎ ‎0.6‎ ‎0.6‎ ‎0.4‎ ‎ 小李这5天的平均投篮命中率为_________;用线性回归分析的方法,预测小李每月6号打篮球6小时的投篮命中率为________.‎ ‎(11福建4)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 ‎ A.6 B.‎8 ‎ C.10 D.12‎ ‎(11浙江8)从装 有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是 ‎ A. B. C. D.‎ ‎(11浙江13)某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图)。根据频率分布直方图推测3000名学生在该次数学考试中成绩小于60分的学生数是_____________________‎ ‎(11陕西9)设··· ,是变量和的次方个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是 ‎ A.直线过点 ‎ B.和的相关系数为直线的斜率 ‎ C.和的相关系数在0到1之间 ‎ D.当为偶数时,分布在两侧的样本点的个数一定相同10.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距‎10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为 ‎ A.(1)和(20) B.(9)和(10) C.(9)和(11) D.(10)和(11)‎ ‎(11重庆4)从一堆苹果中任取10只,称得它们的质量如下(单位:克)‎ ‎125 120 122 105 130 114 116 95 120 134‎ 则样本数据落在内的频率为 A.0.2 B.‎0.3 ‎C.0.4 D.0.5‎ ‎(11山东13)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,‎ 为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽 取40名学生进行调查,应在丙专业抽取的学生人数为 .‎ ‎(11山东8)某产品的广告费用x与销售额y的统计数据如下表 广告费用x(万元)‎ ‎4‎ ‎2‎ ‎3‎ ‎5‎ 销售额y(万元)‎ ‎49‎ ‎26‎ ‎39‎ ‎54‎ 根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为 ‎ A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元 ‎(11福建7)如图,矩形ABCD中,点E为边CD的重点,若在矩形ABCD内部随 机取一个点Q,则点Q取自△ABE内部的概率等于 ‎ A. B. ‎ ‎ C. D. ‎ ‎(11福建19本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:‎ X ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ f a ‎0.2‎ ‎0.45‎ b C ‎ (I)若所抽取的20件日用品中,等级系数为4的恰有4件,等级系数为5的恰有2件,求a、b、c的值;‎ ‎(11)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率。‎ ‎(11北京16本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.‎ ‎(1)如果X=8,求乙组同学植树棵树的平均数和方差;‎ ‎(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.‎ ‎ (注:方差其中为的平均数)‎ ‎(11安徽20)(本小题满分10分)‎ 某地最近十年粮食需求量逐年上升,下表是部分统计数据:‎ 年份 ‎2002‎ ‎2004‎ ‎2006‎ ‎2008‎ ‎2010‎ 需求量(万吨)‎ ‎236‎ ‎246‎ ‎257‎ ‎276‎ ‎286‎ ‎(Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程;‎ ‎(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量。‎ 温馨提示:答题前请仔细阅读卷首所给的计算公式及说明.‎ ‎(11全国本小题满分l2分)(注意:在试题卷上作答无效 ‎)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。‎ ‎ (I)求该地1位车主至少购买甲、乙两种保险中的1种概率;‎ ‎ (II)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率。‎ ‎(11辽宁19本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.‎ ‎(I)假设n=2,求第一大块地都种植品种甲的概率;‎ ‎(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:‎ 品种甲 ‎403‎ ‎397‎ ‎390‎ ‎404‎ ‎388‎ ‎400‎ ‎412‎ ‎406‎ 品种乙 ‎419‎ ‎403‎ ‎412‎ ‎418‎ ‎408‎ ‎423‎ ‎400‎ ‎413‎ 分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?‎ 附:样本数据的的样本方差,其中为样本平均数.‎ ‎(11江西16本小题满分12分)某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5 杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3 杯选对2杯,则评为良好;否则评为及格.假设此人对A和B两种饮料没有鉴别能力.‎ ‎(1)求此人被评为优秀的概率;‎ ‎(2)求此人被评为良好及以上的概率.‎ ‎(11湖南本题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5;已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.‎ ‎(I)完成如下的频率分布表:‎ ‎ 近20年六月份降雨量频率分布表 降雨量 ‎70‎ ‎110‎ ‎140‎ ‎160‎ ‎200‎ ‎220‎ 频率 ‎(II)假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.‎ ‎(11广东17本小题满分13分)在某次测验中,有6位同学的平均成绩为75分。用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:‎ 编号n ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 成绩xn ‎70‎ ‎76‎ ‎72‎ ‎70‎ ‎72‎ ‎(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;‎ ‎(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率。‎ ‎(11天津15本小题满分13分)‎ ‎ 编号为的16名篮球运动员在某次训练比赛中的得分记录如下:‎ 运动员编号 得分 ‎15‎ ‎35‎ ‎21‎ ‎28‎ ‎25‎ ‎36‎ ‎18‎ ‎34‎ 运动员编号 得分 ‎17‎ ‎26‎ ‎25‎ ‎33‎ ‎22‎ ‎12‎ ‎31‎ ‎38‎ ‎(Ⅰ)将得分在对应区间内的人数填入相应的空格;‎ 区间 人数 ‎(Ⅱ)从得分在区间内的运动员中随机抽取2人,‎ ‎(i)用运动员的编号列出所有可能的抽取结果;‎ ‎(ii)求这2人得分之和大于50的概率.‎ ‎(11新课标本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:‎ A配方的频数分布表 指标值分组 ‎[90,94)‎ ‎[94,98)‎ ‎[98,102)‎ ‎[102,106)‎ ‎[106,110]‎ 频数 ‎8‎ ‎20‎ ‎42‎ ‎22‎ ‎8‎ B配方的频数分布表 指标值分组 ‎[90,94)‎ ‎[94,98)‎ ‎[98,102)‎ ‎[102,106)‎ ‎[106,110]‎ 频数 ‎4‎ ‎12‎ ‎42‎ ‎32‎ ‎10‎ ‎ (I)分别估计用A配方,B配方生产的产品的优质品率;‎ ‎ (II)已知用B配方生产的一种产品利润y(单位:元)与其质量指标值t的关系式为 ‎ 估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.‎ ‎(11重庆本小题满分13分,(I)小问6分,(II)小问7分)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:‎ ‎ (I)没有人申请A片区房源的概率;‎ ‎ (II)每个片区的房源都有人申请的概率。‎ ‎(11山东本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.‎ ‎(I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;‎ ‎(II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.‎ ‎(11陕西本小题满分13分)如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下:‎ 所用时间(分钟)‎ ‎10~20‎ ‎20~30‎ ‎30~40‎ ‎40~50‎ ‎50~60‎ 选择L1的人数 ‎6‎ ‎12‎ ‎18‎ ‎12‎ ‎12‎ 选择L2的人数 ‎0‎ ‎4‎ ‎16‎ ‎16‎ ‎4‎ ‎(Ⅰ)试估计40分钟内不能赶到火车站的概率;‎ ‎(Ⅱ)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;‎ ‎(Ⅲ)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的 路径。‎ ‎(11四川本小题共l2分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为、;两小时以上且不超过三小时还车的概率分别为、;两人租车时间都不会超过四小时.‎ ‎(Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率;‎ ‎(Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.‎
查看更多

相关文章

您可能关注的文档