2007—历年安徽高考数学试卷文理及答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2007—历年安徽高考数学试卷文理及答案

‎2007年普通高等学校招生全国统一考试(安徽卷)‎ 数 学(理科)‎ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。全卷满分150分,考试时间120分钟。‎ 考生注意事项:‎ ‎1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。‎ ‎2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动、用橡皮擦干净后,再选涂其他答案标号。‎ ‎3.答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写。在试题卷上作答无效。‎ ‎4.考试结束,监考员将试题卷和答题卡一并收回。‎ 参考公式:‎ 如果事件A、B互斥,那么 球的表面积公式 P(A+B)=PA.+PB. S=4лR2‎ 如果事件A、B相互独立,那么 其中R表示球的半径 P(A·B)=PA.+PB. 球的体积公式 ‎1+2+…+n  V=‎ ‎12+22+…+n2=  其中R表示球的半径 ‎13+23++n3=‎ 第Ⅰ卷(选择题 共55分)‎ 一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎1.下列函数中,反函数是其自身的函数为 A. ‎ B.‎ C. ‎ D.‎ ‎2.设l,m,n均为直线,其中m,n在平面内,“l”是lm且“ln”的 A.充分不必要条件 ‎ B.必要不充分条件 C.充分必要条件 ‎ D.既不充分也不必要条件 ‎3.若对任意R,不等式≥ax恒成立,则实数a的取值范围是 A.a<-1 ‎ B.≤1 ‎ C. <1 ‎ D.a≥1‎ ‎4.若a为实数,=-i,则a等于 A. ‎ B.— ‎ C.2 ‎ D.—2‎ ‎5.若,,则的元素个数为 A.0 ‎ B.1 ‎ C.2 ‎ D.3‎ ‎6.函数的图象为C,‎ ‎①图象关于直线对称;‎ ‎②函灶在区间内是增函数;‎ ‎③由的图象向右平移个单位长度可以得到图象.‎ 以上三个论断中,正确论断的个数是 A.0 ‎ B.1 ‎ C.2 ‎ D.3‎ ‎7.如果点在平面区域上,点在曲线上,那么 的最小值为 A. ‎ B. ‎ C. ‎ D.‎ ‎8.半径为1的球面上的四点是正四面体的顶点,则与两点间的球面距离为 A. ‎ B. ‎ C.‎ D.‎ ‎9.如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且△是等边三角形,则双曲线的离心率为 A. ‎ B. ‎ C. ‎ D.‎ ‎10.以表示标准正态总体在区间()内取值的概率,若随机变量服从正态分布,则概率等于 A.- ‎ B.‎ C. ‎ D.‎ ‎11.定义在R上的函数既是奇函数,又是周期函数,是它的一个正周期.若将方程在闭区间上的根的个数记为,则可能为 A.0 ‎ B.1 ‎ C.3 ‎ D.5‎ 第Ⅱ卷(非选择题 共95分)‎ 注意事项:‎ 请用0.5毫米黑色水签字笔在答题卡上书写作答,在试题卷上书写作答无效.‎ 二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。‎ ‎12.若(2x3+)n的展开式中含有常数项,则最小的正整数n等于 。‎ ‎13.在四面体O-ABC中,为BC的中点,E为AD的中点,则= (用a,b,c表示)。‎ ‎14.如图,抛物线y=--x2+1与x轴的正半轴交于点A,将线段OA的n等分点从左至右依次记为P1,P2,…,Pn-1,过这些分点分别作x轴的垂线,与抛物线的交点依次为Q1,Q2,…,Qn-1,从而得到n-1个直角三角形△Q1OP1, △Q2P1P2,…, △Qn-1Pn-1Pn-1,当n→∞时,这些三角形的面积之和的极限为 。‎ ‎15.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号)。‎ ‎①矩形;‎ ‎②不是矩形的平行四边形;‎ ‎③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;‎ ‎④每个面都是等边三角形的四面体;‎ ‎⑤每个面都是直角三角形的四面体。‎ 三、解答题:本大题共6小题,共79分。解答应写出文字说明、证明过程或演算步骤。‎ ‎16.(本小题满分12分)‎ 已知0<a<的最小正周期,b=(cos a,2),且a·b=m。求的值。‎ ‎17.(本小题满分14分)‎ 如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2。‎ ‎(Ⅰ)求证:A1C1与AC共面,B1D1与BD共面;‎ ‎(Ⅱ)求证:平面A1ACC1⊥平面B1BDD1;‎ ‎(Ⅲ)求二面角A-BB1-C的大小(用反三角函数值圾示)。‎ ‎18.(本小题满分14分)‎ 设a≥0,f (x)=x-1-ln2 x+2a ln x(x>0)。‎ ‎(Ⅰ)令F(x)=xf'(x),讨论F(x)在(0,+∞)内的单调性并求极值;‎ ‎(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1。‎ ‎19.(本小题满分12分)‎ 如图,曲线G的方程为y2=2x(y≥0)。以原点为圆心,以t(t >0)为半径的圆分别与曲线G和y轴的正半轴相交于点A与点B。直线AB与x轴相交于点C。‎ ‎(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;‎ ‎(Ⅱ)设曲线G上点D的横坐标为a+2,求证:直线CD的斜率为定值。‎ ‎20.(本小题满分13分)‎ 在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔。以ξ表示笼内还剩下的果蝇的只数。‎ ‎(Ⅰ)写出ξ的分布列(不要求写出计算过程);‎ ‎(Ⅱ)求数学期望Eξ;‎ ‎(Ⅲ)求概率P(ξ≥Eξ)。‎ ‎21.(本小题满分14分)‎ 某国采用养老储备金制度。公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利。这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……,以Tn表示到第n年末所累计的储备金总额。‎ ‎(Ⅰ)写出Tn与Tn-1(n≥2)的递推关系式;‎ ‎(Ⅱ)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列。‎ ‎2007年普通高等学校招生全国统一考试(安徽卷)‎ 数 学(理科)‎ 参考答案 一、选择题:本题考查基本知识和基本运算.每小题5分,满分55分。‎ ‎1.D  2.A  3.B  4.B  5.C  6.C ‎7.A  8.C  9.D  10.B  11.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分。‎ ‎12.7 ‎ ‎13. ‎ ‎14. ‎ ‎15.①③④⑤‎ 三、解答题 ‎16.(本小题满分12分)‎ 本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力.本小题满分12分。‎ 解:因为为的最小正周期,故 因a·b=m,又a·b=,‎ 故 由于,所以 ‎=‎ ‎=‎ ‎17.(本小题满分14分)‎ 本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分。‎ 解法1(向量法):‎ 以D为原点,以DA,DC,所在直线分别为x轴,y轴,z轴建立空间直角坐标系如图,则有 A(2,0,0),B(2,2,0),C(0,2,0),‎ ‎(Ⅰ)证明:‎ 于是与AC共面,与BD共面.‎ ‎(Ⅱ)证明:‎ 内的两条相交直线,‎ 又平面 ‎(Ⅲ)解:‎ 设 于是 设 于是 解法2(综合法):‎ ‎(Ⅰ)证明:‎ ‎∥平面ABCD.‎ 于是∥CD,∥DA.‎ 设E,F分别为DA,DC的中点,连结EF,‎ 有∥∥‎ ‎∴∥‎ 于是∥‎ 由DE=DF=1,得EF∥AC,‎ 故∥‎ 与AC共面.‎ 过点 于是 所以点O在BD上,故 ‎(Ⅱ)证明:‎ 又BD⊥AC(正方形的对角线互相垂直),‎ 内的两条相交直线,‎ 又平面 ‎(Ⅲ)解:∵直线DB是直线 根据三垂线定理,有AC⊥‎ 过点A在平面 则 于是 所以,∠AMC是二面角 根据勾股定理,有 二面角 ‎18.(本小题满分14分)‎ 本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力,本小题满分14分.‎ ‎(Ⅰ)解:根据求导法则得 故 于是 列表如下:‎ x ‎(0,2)‎ ‎2‎ ‎(2,+∞)‎ F′(x)‎ ‎-‎ ‎0‎ ‎+‎ F(x)‎ ‎↓‎ 极小值F(2)‎ ‎↑‎ 故知F(x)在(0,2)内是减函数,在(2,+∞)内是增函数,所以,在x=2处取得极小值F(2)=2-2In2+2a.‎ ‎(Ⅱ)证明:由 于是由上表知,对一切 从而当 所以当 故当 ‎19.(本小题满分12分)‎ 本小题综合考查平面解析几何知识,主要涉及平面直角坐标系中的两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系,考查运算能力与思维能力,综合分析问题的能力.本小题满分12分.‎ 解:‎ ‎(Ⅰ)由题意知,A()‎ 因为 由于 由点B(0,t)C(c,0)的坐标知,直线BC的方程为 又因点A在直线BC上,故有 将(1)代入上式,得 解得 ‎(Ⅱ)因为 所以直线CD的斜率为定值.‎ ‎20.(本小题满分13分)‎ 本小题主要考查等可能场合下的事件概率的计算、离散型随机变量的分布列、数学期望的概念及其计算,考查分析问题及解决实际问题的能力.本小题满分13分.‎ 解:‎ ‎(1)的分布列为 ‎(Ⅱ)数学期望为E=‎ ‎(Ⅲ)所求的概率 ‎21.(本小题满分14分)‎ 本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力,考查应用所学知识分析和解决实际问题的能力.本小题满分14分.‎ 解:‎ ‎(Ⅰ)我们有 ‎(Ⅱ)‎ ‎= ①‎ 在①式两端同乘1+r,得 ‎ ②‎ ‎②-①,得 ‎=‎ 即 如果记 则 其中 ‎。‎ ‎2007年普通高等学招生全国统一考试(安徽卷)‎ 数 学(文科)‎ ‎ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。全卷满分150分,考试时间120分钟。‎ 考生注意事项:‎ ‎ 1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答 题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。‎ ‎ 2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。‎ 如需改动,用橡皮擦干净后,再选涂其他答案标号。‎ ‎3.答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写。在试题卷上作答无效。‎ ‎4.考试结束,监考员将试题卷和答题卡一并收回。‎ 参考公式:‎ 如果事件、互斥,那么 球的表面积公式 ‎ ‎ 如果事件、相互独立,那么 其中表示球的半径 ‎ 球的体积公式 ‎1+2…+n= ‎ ‎…+ 其中表示球的半径 ‎…+‎ 第Ⅰ卷(选择题共55分)‎ 一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎(1)若,则=‎ ‎ (A) (B) (C) (D) ‎ ‎(2)椭圆的离心率为 ‎ (A) (B) (C) (D)‎ ‎(3)等差数列的前项和为若 ‎ (A)12 (B)10 (C)8 (D)6‎ ‎(4)下列函数中,反函数是其自身的函数为 ‎(A) (B)‎ ‎(C) (D) ‎ ‎(5)若圆的圆心到直线的距离为,则a的值为 ‎(A)-2或2 (B) (C)2或0 (D)-2或0‎ ‎(6)设均为直线,其中在平面的 ‎(A)充分不必要条件 (B)必要不充分条件 ‎(C)充分必要条件 (D)既不充分也不必要条件 ‎(7)图中的图象所表示的函数的解析式为 ‎(A) (0≤x≤2) ‎ ‎(B) (0≤x≤2)‎ ‎(C) (0≤x≤2)‎ ‎(D) (0≤x≤2)‎ ‎(8)设a>1,且,则的大小关系为 ‎(A) n>m>p (B) m>p>n (C) m>n>p (D) p>m>n ‎(9)如果点P在平面区域上,点O在曲线最小值为 ‎(A) (B) (C) (D)‎ ‎(10)把边长为的正方形ABCD沿对角线AC折成直二面角, 折成直二面角后,在A,B,C,D四点所在的球面上,B与D两点之间的球面距离为 ‎(A) (B) (C) (D) ‎ ‎(11)定义在R上的函数f (x)既是奇函数, 又是周期函数, T是它的一个正周期.若将方程f (x)=0在闭区[-T,T]上的根的个数记为n,则n可能为 ‎(A)0 (B)1 (C)3 (D)5‎ ‎(在此卷上答题无效)‎ 绝密★启用前 ‎2007年普通高等学校招生全国统一考试(安徽卷)‎ 数 学(理科)‎ 第Ⅱ卷(非选择题 共95分)‎ 注意事项:‎ 请用0.5毫米黑色水签字笔在答题卡上书写作答,在试题卷上书写作答无效.‎ 二、填空题:本大共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.‎ ‎(12)已知,则( 的值等于 .‎ ‎(13)在四面体O-ABC中,D为BC的中点,E为AD的中点,则= (用a,b,c表示).‎ ‎ (14)在正方体上任意选择两条棱, 则这两条棱相互平行的概率为 .‎ ‎(15)函数的图象为C, 如下结论中正确的是 (写出所有正确结论的编号).‎ ‎①图象C关于直线对称;‎ ‎②图象C关于点对称;‎ ‎③函数)内是增函数;‎ ‎④由的图象向右平移个单位长度可以得到图象C.‎ 三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤.‎ ‎(16)(本小题满分10分)‎ 解不等式>0.‎ ‎(17) (本小题满分14分)‎ 如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.‎ ‎(Ⅰ)求证:A1C1与AC共面,B1D1与BD共面;‎ ‎(Ⅱ)求证:平面A1ACC1⊥平面B1BDD1;‎ ‎(Ⅲ)求二面角A-BB1-C的大小(用反三角函数值表示) ‎ ‎(18)(本小题满分14分)‎ ‎   设F是抛物线G:x2=4y的焦点.‎ ‎   (Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程:‎ ‎(Ⅱ)设A、B为势物线G上异于原点的两点,且满足,延长AF、BF 分别交抛物线G于点C,D,求四边形ABCD面积的最小值.‎ ‎(19)(本小题满分13分)‎ 在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.‎ ‎ (Ⅰ)求笼内恰好剩下1只果蝇的概率;‎ ‎ (Ⅱ)求笼内至少剩下5只果蝇的概率.‎ ‎(20)(本小题满分14分)‎ 设函数 ‎  f(x)=-cos2x-4tsincos+4t3+t2-3t+4,x∈R,‎ 其中≤1,将f(x)的最小值记为g(t).‎ ‎(Ⅰ)求g(t)的表达式;‎ ‎(Ⅱ)讨论g(t)在区间(-1,1)内的单调性并求极值.‎ ‎(21)(本小题满分14分)‎ ‎   某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后第年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利,这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为n(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……,以Tn表示到第n年末所累计的储备金总额.‎ ‎ (Ⅰ)写出Tn与Tn-1(n≥2)的递推关系式;‎ ‎ (Ⅱ)求证:Tn=An+Bn,其中是一个等比数列,是一个等差数列.‎ ‎2007年普通高等学校招生全国统一考试(安徽卷)‎ 数学(文史)参考答案 一、选择题:本题考查基本知识的基本运算.每小题5分,满分55分.‎ ‎1.D 2.A 3.C 4.D 5.C 6.A ‎ ‎7.B 8.B 9.A 10.C 11.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.‎ ‎12. 13. 14. 15.①②③‎ 三、解答题 ‎16.本小题主要考查三角函数的基本性质,含绝对值不等式的解法,考查基本运算能力.本小题满分10分.‎ 解:因为对任意,,所以原不等式等价于.‎ 即,,,故解为.‎ 所以原不等式的解集为.‎ ‎17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分.‎ 解法1(向量法):‎ A B C D 以为原点,以所在直线分别为轴,轴,轴建立空间直角坐标系如图,‎ 则有.‎ ‎(Ⅰ)证明:.‎ ‎.‎ 与平行,与平行,‎ 于是与共面,与共面.‎ ‎(Ⅱ)证明:,,‎ ‎,.‎ 与是平面内的两条相交直线.‎ 平面.‎ 又平面过.‎ 平面平面.‎ ‎(Ⅲ)解:.‎ 设为平面的法向量,‎ ‎,.‎ 于是,取,则,.‎ 设为平面的法向量,‎ ‎,.‎ 于是,取,则,.‎ A B C D ‎.‎ 二面角的大小为.‎ 解法2(综合法):‎ ‎(Ⅰ)证明:平面,平面.‎ ‎,,平面平面.‎ 于是,.‎ 设分别为的中点,连结,‎ 有.‎ ‎,‎ 于是.‎ 由,得,‎ 故,与共面.‎ 过点作平面于点,‎ 则,连结,‎ 于是,,.‎ ‎,.‎ ‎,.‎ 所以点在上,故与共面.‎ ‎(Ⅱ)证明:平面,,‎ 又(正方形的对角线互相垂直),‎ 与是平面内的两条相交直线,‎ 平面.‎ 又平面过,平面平面.‎ ‎(Ⅲ)解:直线是直线在平面上的射影,,‎ 根据三垂线定理,有.‎ 过点在平面内作于,连结,‎ 则平面,‎ 于是,‎ 所以,是二面角的一个平面角.‎ 根据勾股定理,有.‎ ‎,有,,,.‎ ‎,,‎ 二面角的大小为.‎ ‎18.本小题主要考查抛物线的方程与性质,抛物线的切点与焦点,向量的数量积,直线与抛物线的位置关系,平均不等式等基础知识,考查综合分析问题、解决问题的能力.本小题满分14分.‎ 解:(I)设切点.由,知抛物线在点处的切线斜率为 ‎,故所求切线方程为.‎ 即.‎ 因为点在切线上.‎ 所以,,.‎ 所求切线方程为.‎ ‎(II)设,.‎ 由题意知,直线的斜率存在,由对称性,不妨设.‎ 因直线过焦点,所以直线的方程为.‎ 点的坐标满足方程组 得,‎ 由根与系数的关系知 ‎.‎ 因为,所以的斜率为,从而的方程为.‎ 同理可求得.‎ ‎.‎ 当时,等号成立.所以,四边形面积的最小值为.‎ ‎19.本小题主要考查排列、组合知识与等可能事件、互斥事件概率的计算,运用概率知识分析问题及解决实际问题的能力.本小题满分13分.‎ 解:以表示恰剩下只果蝇的事件.‎ 以表示至少剩下只果蝇的事件.‎ 可以有多种不同的计算的方法.‎ 方法1(组合模式):当事件发生时,第只飞出的蝇子是苍蝇,且在前只飞出的蝇子中有1只是苍蝇,所以.‎ 方法2(排列模式):当事件发生时,共飞走只蝇子,其中第只飞出的蝇子是苍蝇,哪一只?有两种不同可能.在前只飞出的蝇子中有只是果蝇,有种不同的选择可能,还需考虑这只蝇子的排列顺序.所以.‎ 由上式立得;‎ ‎.‎ ‎20.本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导数,函数的单调性,考查应用导数分析解决多项式函数的单调区间,极值与最值等问题的综合能力.本小题满分14分.‎ 解:(I)我们有 ‎ ‎ ‎ ‎ ‎ .‎ 由于,,故当时,达到其最小值,即 ‎.‎ ‎ (II)我们有.‎ 列表如下:‎ 极大值 极小值 由此可见,在区间和单调增加,在区间单调减小,极小值为,极大值为.‎ ‎21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.‎ 解:(Ⅰ)我们有.‎ ‎(Ⅱ),对反复使用上述关系式,得 ‎ , ①‎ 在①式两端同乘,得 ‎ ②‎ ‎②①,得 ‎ .‎ 即.‎ 如果记,,‎ 则.‎ 其中是以为首项,以为公比的等比数列;是以为首项,为公差的等差数列.‎ ‎2008年普通高等学校招生一考试(安徽卷)数 学(理科)‎ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.‎ 考生注意事项:答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.‎ 1. 答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效.考试结束,监考员将试题卷和答题卡一并收回.‎ 参考公式:如果事件互斥,那么 球的表面积公式 ‎ ‎ 其中表示球的半径 如果事件相互独立,那么 ‎ ‎ 球的体积公式 ‎ 如果随机变量 其中表示球的半径 ‎ 第I卷(选择题共60分)‎ 一、选择题:只有一项是符合题目要求的.‎ ‎(1).复数 ( )A.2 B.-2 C. D. ‎ ‎(2).集合,则下列结论正确的是( ) ‎ A. B. ‎ C. D. ‎ ‎(3).在平行四边形ABCD中,AC为一条对角线,若,,则( )‎ A. (-2,-4) B.(-3,-5) C.(3,5) D.(2,4) ‎ ‎(4).已知是两条不同直线,是三个不同平面,下列命题中正确的是( )‎ A. B. ‎ C. D.‎ ‎(5).将函数的图象按向量平移后所得的图象关于点中心对称,则向量的坐标可能为( )‎ A. B. C. D.‎ ‎(6).设则中奇数的个数为( )‎ A.2 B.3 C.4 D.5‎ ‎(7).是方程至少有一个负数根的( )‎ A.必要不充分条件 B.充分不必要条件 C.充分必要条件 D.既不充分也不必要条件 ‎(8).若过点的直线与曲线有公共点,则直线的斜率的取值范围为( )‎ A. B. C. D.‎ ‎(9).在同一平面直角坐标系中,函数的图象与的图象关于直线对称。而函数的图象与的图象关于轴对称,若,则的值是( )‎ ‎ A. B. C. D. ‎ ‎10).设两个正态分布和的密度函数图像如图所示。则有( )‎ A. B.‎ C. D.‎ ‎(11).若函数分别是上的奇函数、偶函数,且满足,则有( )‎ A. B.‎ C. D.‎ ‎(12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )‎ A. B. C. D. ‎ 注意: 请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效.‎ 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.‎ ‎(13).函数的定义域为 .‎ ‎(14)在数列在中,,,,其中为常数,则的值是 ‎ ‎(15)若为不等式组表示的平面区域,则当从-2连续变化到1时,动直线 扫过中的那部分区域的面积为 ‎ ‎(16)已知在同一个球面上,若 ‎,则两点间的球面距离是 ‎ 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.‎ ‎(17).(本小题满分12分)‎ 已知函数 ‎(Ⅰ)求函数的最小正周期和图象的对称轴方程(Ⅱ)求函数在区间上的值域 ‎(18).(12分如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点(Ⅰ)证明:直线;(Ⅱ)求异面直线AB与MD所成角的大小; (Ⅲ)求点B到平面OCD的距离。‎ ‎19).( 12分)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,标准差为。‎ ‎(Ⅰ)求n,p的值并写出的分布列;‎ ‎(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率 ‎(20).(12分)设函数 ‎(Ⅰ)求函数的单调区间; (Ⅱ)已知对任意成立,求实数 的取值范围。‎ ‎(21).(13分)设数列满足为实数 ‎(Ⅰ)证明:对任意成立的充分必要条件是;‎ ‎(Ⅱ)设,证明:;‎ ‎(Ⅲ)设,证明:‎ ‎(22).(13分)设椭圆过点,且着焦点为 ‎(Ⅰ)求椭圆的方程;(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上 答案1A 2D 3B 4D 5C 6A 7B 8C 9B 10A 11D 12C ‎13: 14: 1 15: 16: ‎ ‎17解:(1)‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 由 函数图象的对称轴方程为 ‎ ‎(2)‎ 因为在区间上单调递增,在区间上单调递减,‎ 所以 当时,去最大值 1‎ 又 ,当时,取最小值 所以 函数 在区间上的值域为 ‎18 方法一(综合法) (1)取OB中点E,连接ME,NE 又 ‎ (2)‎ ‎ 为异面直线与所成的角(或其补角)作连接 ‎ ‎ ,‎ ‎ 所以 与所成角的大小为 ‎ (3)点A和点B到平面OCD的距离相等,连接OP,过点A作 ‎ 于点Q,‎ ‎ 又 ,线段AQ的长就是点A到平面OCD的距离 ‎ ,‎ ‎ ,所以点B到平面OCD的距离为 方法二(向量法)作于点P,如图,分别以AB,AP,AO所在直线为 轴建立坐标系 ‎,‎ ‎(1)‎ 设平面OCD的法向量为,则 即 ‎ 取,解得 ‎(2)设与所成的角为,‎ ‎ , 与所成角的大小为 ‎(3)设点B到平面OCD的交流为,则为在向量上的投影的绝对值,‎ ‎ 由 , 得.所以点B到平面OCD的距离为 ‎19 (1)由得,从而 的分布列为 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎(2)记”需要补种沙柳”为事件A, 则 得 ‎ 或 ‎ ‎20 解 (1) 若 则 列表如下 ‎ ‎ ‎+‎ ‎0‎ ‎-‎ ‎-‎ 单调增 极大值 单调减 单调减 ‎ (2)在 两边取对数, 得 ,由于所以 (1)‎ 由(1)的结果可知,当时, , ‎ 为使(1)式对所有成立,当且仅当,即 ‎21解 (1) 必要性 : , 又 ,即 充分性 :设 ,对用数学归纳法证明 ‎ 当时,.假设 ‎ 则,且 ‎,由数学归纳法知对所有成立 ‎ (2) 设 ,当时,,结论成立 ‎ 当 时, ‎ ‎ ,由(1)知,所以 且 ‎ ‎ (3) 设 ,当时,,结论成立 ‎ 当时,由(2)知 ‎ ‎ ‎22解 (1)由题意: ,解得,所求椭圆方程为 ‎ ‎(2)方法一 设点Q、A、B的坐标分别为。‎ 由题设知均不为零,记,则且 又A,P,B,Q四点共线,从而 于是 , ‎ ‎ , ‎ 从而 ,(1) ,(2)‎ 又点A、B在椭圆C上,即 ‎ ‎ ‎ (1)+(2)×2并结合(3),(4)得 即点总在定直线上 方法二设点,由题设,均不为零。‎ 且 又 四点共线,可设,于是 ‎ (1) (2)‎ 由于在椭圆C上,将(1),(2)分别代入C的方程整理得 ‎3)‎ ‎(4)‎ (4) ‎-(3) 得 ‎ ‎2008年普通高等学校招生全国统一考试(安徽卷)‎ 数 学(文科)试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.‎ 考生注意事项:‎ 1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.‎ 2. 答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.‎ 3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效.‎ 4. 考试结束,监考员将试题卷和答题卡一并收回.‎ 参考公式:‎ 如果事件互斥,那么 球的表面积公式 ‎ ‎ 其中表示球的半径 如果事件相互独立,那么 球的体积公式 ‎ ‎ 其中表示球的半径 ‎ ‎ ‎ 第I卷(选择题共60分)‎ 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎(1).若为全体实数的集合,则下列结论中正确的是( )‎ A. B. ‎ C. D. ‎ ‎(2).若,, 则( )‎ A.(1,1) B.(-1,-1) C.(3,7) D.(-3,-7) ‎ ‎(3).已知是两条不同直线,是三个不同平面,下列命题中正确的是( )‎ A. B. ‎ C. D. ‎ ‎(4).是方程ax2+1=0有一个负数根的( )‎ A.必要不充分条件 B.充分必要条件 C.充分不必要条件 D.既不充分也不必要条件 ‎(5).在三角形中,,则的大小为( )‎ A. B. C. D.‎ ‎(6).函数的反函数为 A. B. ‎ C. D. ‎ ‎ ‎ ‎(7).设则中奇数的个数为( )‎ A.2 B.3 C.4 D.5‎ ‎(8).函数图像的对称轴方程可能是( )‎ A. B. C. D.‎ ‎(9).设函数 则( )‎ A.有最大值 B.有最小值 C.是增函数 D.是减函数 ‎(10)若过点的直线与曲线有公共点,则直线的斜率的取值范围为( )‎ A. B. C. D. ‎ ‎(11) 若为不等式组表示的平面区域,则当从-2连续变化到1时,动直线 扫过中的那部分区域的面积为 ( )‎ A. B.1 C. D.2‎ ‎(12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是 ( )‎ A. B. C. D. ‎ 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.‎ ‎(13).函数的定义域为 .‎ ‎(14).已知双曲线的离心率是。则= ‎ ‎(15) 在数列在中,,,,其中为常数,‎ 则 ‎ ‎(16)已知点在同一个球面上,若 ‎,则两点间的球面距离是 ‎ 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.‎ ‎(17).(本小题满分12分)‎ 已知函数 ‎(Ⅰ)求函数的最小正周期 ‎(Ⅱ)求函数在区间上的值域 ‎(18).(本小题满分12分)‎ ‎ 在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.‎ ‎(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g”的概率。‎ ‎(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率。‎ ‎(19).(本小题满分12分 如图,在四棱锥中,底面是边长为1的菱形,, , ,为的中点。‎ ‎(Ⅰ)求异面直线AB与MD所成角的大小;‎ ‎(Ⅱ)求点B到平面OCD的距离。‎ ‎(20).(本小题满分12分)‎ 设函数为实数。‎ ‎(Ⅰ)已知函数在处取得极值,求的值; ‎ ‎(Ⅱ)已知不等式对任意都成立,求实数的取值范围。‎ ‎(21).(本小题满分12分)‎ 设数列满足其中a , c为实数,且 ‎(Ⅰ)求数列的通项公式 ‎(Ⅱ)设,,求数列的前项和;‎ ‎(Ⅲ)若对任意成立,证明 ‎(22).(本小题满分14分)‎ 设椭圆其相应于焦点的准线方程为.‎ ‎(Ⅰ)求椭圆的方程;‎ ‎(Ⅱ)已知过点倾斜角为的直线交椭圆于两点,求证:‎ ‎ ;‎ ‎ (Ⅲ)过点作两条互相垂直的直线分别交椭圆C于点A , B和D , E ,求 的最小值 数学(文科)试题参考答案 一. 选择题 ‎1D 2B 3B 4B 5A 6C 7A 8D 9A 10D 11C 12C 二. ‎13: 14: 4 15: -1 16: ‎ 三. 解答题 ‎17解:‎ ‎(1)‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎(2)‎ 因为在区间上单调递增,在区间上单调递减,‎ 所以 当时,取得最大值 1‎ 又 ,‎ 当时,取得最小值 所以 函数 在区间上的值域为 ‎18 本题主要考查排列、组合知识与等可能事件、互斥事件概率的计算,运用概率知识分析问题和解决实际问题的能力,本小题满分12分。‎ 解:‎ ‎(1)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有后鼻音“g”‎ 的概率为,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为 ‎(2)设表示所抽取的三张卡片中,恰有张卡片带有后鼻音“g”的事件,且其相应的概率为则 ‎ , ‎ ‎ 因而所求概率为 ‎ ‎ ‎19 本小题主要考查直线与直线、直线与平面的位置关系、异面直线所成角即点到平面的距离等知识,考查空间想象能力和思维能力,用综合法或向量法解决立体几何问题的能力。本小题满分12分。‎ 解:方法一(综合法)‎ ‎(1)‎ ‎ 为异面直线与所成的角(或其补角)‎ ‎ 作AP⊥CD于点P ,连接MP ‎ ‎ ‎ ‎ ‎,‎ ‎ 所以 与所成角的大小为 ‎(2)点B和点A到平面OCD的距离相等,‎ 连接OP,过点A作 于点Q,‎ ‎ 又 ,线段AQ的长就是点A到平面OCD的距离 ‎ ,‎ ‎ ,所以点B到平面OCD的距离为 方法二(向量法)‎ 作于点P,如图,分别以AB,AP,AO所在直线为轴建立坐标系 ‎,‎ ‎(1)设与所成的角为,‎ ‎ , ‎ 与所成角的大小为 ‎(2) ‎ 设平面OCD的法向量为,则 即 ‎ 取,解得 设点B到平面OCD的距离为,则为在向量n上的投影的绝对值,‎ ‎ , .‎ 所以点B到平面OCD的距离为 ‎20 本题主要考查函数倒数的概念与计算,倒数于函数极值的关系,不等式的性质和综合运用有关知识解决问题的能力。本小题满分12分。‎ 解: ‎ ‎(1) ,由于函数在时取得极值,所以 ‎ ‎ 即 ‎ ‎ (2) 方法一 ‎ 由题设知:对任意都成立 ‎ 即对任意都成立 ‎ 设 , 则对任意,为单调递增函数 ‎ 所以对任意,恒成立的充分必要条件是 ‎ 即 ,‎ ‎ 于是的取值范围是 ‎ 方法二 ‎ 由题设知:对任意都成立 ‎ 即对任意都成立 ‎ 于是对任意都成立,即 于是的取值范围是 ‎21本题主要考查数列的概念,数列通项公式的求法以及不等式的证明等;考查运算能力,综合运用知识解决问题的能力。本小题满分12分。‎ 解 (1) 方法一:‎ ‎ ‎ ‎ 当时,是首项为,公比为的等比数列。‎ ‎ ,即 。当时,仍满足上式。‎ ‎ 数列的通项公式为 。‎ 方法二 由题设得:当时,‎ 时,也满足上式。‎ 数列的通项公式为 。‎ ‎ (2) 由(1)得 ‎ ‎ ‎ ‎ (3) 证明:由(1)知 若,则 ‎ ‎ 由对任意成立,知。‎ 下证,用反证法 方法一:假设,由函数的函数图象知,当趋于无穷大时,趋于无穷大 不能对恒成立,导致矛盾。‎ ‎。‎ 方法二:假设,,‎ 即 恒成立 (*)‎ 为常数, (*)式对不能恒成立,导致矛盾,‎ ‎22本题主要考查直线的方程、椭圆的方程和性质、直线与椭圆的位置关系等知识,考试数形结合的数学思想以及运算能力和综合解题能力。本小题满分14分。‎ 解 :(1)由题意得:‎ ‎ ‎ ‎ 椭圆的方程为 ‎ ‎ ‎ (2)方法一:‎ ‎ 由(1)知是椭圆的左焦点,离心率 ‎ 设为椭圆的左准线。则 ‎ 作,与轴交于点H(如图)‎ ‎ 点A在椭圆上 ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 同理 ‎ ‎ 。‎ 方法二:‎ ‎ 当时,记,则 ‎ 将其代入方程 ‎ 得 ‎ ‎ 设 ,则是此二次方程的两个根.‎ ‎ ‎ ‎ ‎ ‎ ................(1)‎ ‎ 代入(1)式得 ........................(2)‎ ‎ 当时, 仍满足(2)式。‎ ‎ ‎ ‎(3)设直线的倾斜角为,由于由(2)可得 ‎ ,‎ ‎ ‎ ‎ 当时,取得最小值 ‎2009年普通高等学校招生全国统一考试(安徽卷)‎ 数学(理)试题 ‎ 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷1至2页。第II卷3‎ 至4页。全卷满分150分,考试时间120分钟。‎ 考生注意事项:‎ ‎1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名,座位号与本人姓名、座位号是否一致。务必在答题卡背面规定的地方填写姓名和座位号后两位。‎ ‎2.答第I卷时、每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮檫干净后,在选涂其他答案标号。‎ ‎3.答第II卷时,必须用直径0.5毫米黑色黑水签字笔在答题卡上书写,要求字体工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后在用0.5毫米的黑色墨色签字笔清楚。必须在标号所指示的答题区域作答,超出答题卡区域书写的答案无效,在试题卷、草稿纸上答题无效。‎ ‎4.考试结束,务必将试题卷和答题卡一并上交。‎ 参考公式:‎ S表示底面积,h表示底面的高 如果事件A、B互斥,那么 棱柱体积 ‎ ‎ P(A+B)=P(A)+P (B) 棱锥体积 ‎ ‎ ‎ 第I卷 (选择题 共50分)‎ 一.选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎(1)i是虚数单位,若,则乘积的值是(B)‎ ‎ (A)-15 (B)-3 (C)3 (D)15‎ ‎(2)若集合则A∩B是(D)‎ ‎ (A) (B) ‎ ‎ (C) (D) ‎ ‎(3)下列曲线中离心率为的是(B)‎ ‎(A) (B) (C) (D)‎ ‎ (4)下列选项中,p是q的必要不充分条件的是(A)‎ ‎(A)p:>b+d , q:>b且c>d ‎ ‎(B)p:a>1,b>1, q:的图像不过第二象限 ‎(C)p: x=1, q:‎ ‎(D)p:a>1, q: 在上为增函数 ‎(5)已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大值的是(B)‎ ‎(A)21 (B)20 (C)19 (D) 18‎ ‎(6)设<b,函数的图像可能是(C)‎ ‎(7)若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是(A) (A) (B) (C) (D) ‎ ‎(8)已知函数,的图像与直线的两个相邻交点的距离等于,则的单调区间是(C)‎ ‎(A) (B)‎ ‎(C) (D)‎ ‎(9)已知函数在R上满足,则曲线在点处的切线方程是(A)‎ ‎(A) (B) (C) (D)‎ ‎(10)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于(D)‎ ‎(A) (B) (C) (D)‎ 二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。‎ ‎(11)若随机变量~,则=________.‎ 解答:‎ ‎(12)以直角坐标系的原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的长度单位。已知直线的极坐标方程为,它与曲线(为参数)相交于两点A和B,则|AB|=_______.‎ 解答:‎ ‎(13) 程序框图(即算法流程图)如图所示,其输出结果是_______.‎ 解答:127‎ ‎(14)给定两个长度为1的平面向量和,它们的夹角为. 如图所示,点C在以O为圆心的圆弧上变动.若其中,则的最大值是=________.‎ 解答:2‎ ‎(15)对于四面体ABCD,下列命题正确的是_________(写出所有正确命题的编号)。‎ 相对棱AB与CD所在的直线异面;‎ 由顶点A作四面体的高,其垂足是BCD的三条高线的交点;‎ 若分别作ABC和ABD的边AB上的高,则这两条高所在的直线异面;‎ 分别作三组相对棱中点的连线,所得的三条线段相交于一点;‎ 最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱。‎ 解答: 三.解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。解答写在答题卡的指定区域内。‎ ‎(16)(本小题满分12分)‎ 在ABC中,sin(C-A)=1, sinB=。‎ ‎(I)求sinA的值;‎ ‎ (II)设AC=,求ABC的面积。‎ ‎(16)本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运算求解能力。本小题满分12分 解:(I)由知。‎ 又所以即 故 ‎(II)由(I)得:‎ 又由正弦定理,得:‎ 所以 ‎(17)(本小题满分12分)‎ ‎ 某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的。对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是。同样也假定D受A、B和C感染的概率都是。在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量。写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).‎ ‎(17)本小题主要考查古典概型及其概率计算,考查取有限个值的离散型随机变量及其分布列和均值的概念,通过设置密切贴近现实生活的情境,考查概率思想的应用意识和创新意识。体现数学的科学价值。本小题满分12分。‎ X ‎1‎ ‎2‎ ‎3‎ P 解:随机变量X的分布列是 X的均值。‎ 附:X的分布列的一种求法 共有如下6种不同的可能情形,每种情形发生的概率都是:‎ ‎①‎ ‎②‎ ‎③‎ ‎④‎ ‎⑤‎ ‎⑥‎ A-B-C-D A—B—C ‎└D A—B—C ‎└D A—B—D ‎└C A—C—D ‎└B 在情形①和②之下,A直接感染了一个人;在情形③、④、⑤之下,A直接感染了两个人;在情形⑥之下,A直接感染了三个人。‎ ‎(18)(本小题满分13分)‎ 如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,‎ BD=,AE、CF都与平面ABCD垂直,AE=1,CF=2。‎ ‎(I)求二面角B-AF-D的大小;‎ ‎(II)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积。‎ ‎(18) 本小题主要考查直线与直线、直线与平面、平面与平面的位置关系、相交平面所成二面角以及空间几何体的体积计算等知识,考查空间想象能力和推理论证能力、利用综合法或向量法解决立体几何问题的能力。本小题满分13分。‎ 解:(I)(综合法)连接AC、BD交于菱形的中心O,过O作OG⊥AF,G为垂足。‎ 连接BG、DG。‎ 由BD⊥AC,BD⊥CF,得:BD⊥平面ACF,故BD⊥AF.‎ 于是AF⊥平面BGD,所以BG⊥AF,DG⊥AF,∠BGD为二面角B-AF-D的平面角。‎ 由FC⊥AC,FC=AC=2,得∠FAC=,OG=.‎ 由OB⊥OG,OB=OD=,得∠BGD=2∠BGO=.‎ ‎(向量法)以A为坐标原点,、、方向分别为轴、轴、轴的正方向建立空间直角坐标系(如图).于是 设平面ABF的法向量,则由得。‎ 令得,‎ 同理,可求得平面ADF的法向量。‎ 由知,平面ABF与平面ADF垂直,‎ 二面角B-AF-D的大小等于。‎ ‎(II)连EB、EC、ED,设直线AF与直线CE相交于点H,则四棱锥E-ABCD与四棱锥F-ABCD的公共部分为四棱锥H-ABCD。‎ 过H作HP⊥平面ABCD,P为垂足。‎ 因为EA⊥平面ABCD,FC⊥平面ABCD,,所以平面ACFE⊥平面ABCD,‎ 从而 由得。‎ 又因为 故四棱锥H-ABCD的体积 ‎(19)(本小题满分12分)‎ ‎ 已知函数,讨论的单调性.‎ ‎(19)本小题主要考查函数的定义域、利用导数等知识研究函数的单调性,考查分类讨论的思想方法和运算求解的能力。本小题满分12分。‎ 解:的定义域是(0,+),‎ 设,二次方程的判别式.‎ ① 当,即时,对一切都有.‎ 此时在上是增函数。‎ ② 当,即时,仅对有,对其余的都有, 此时在上也是增函数。‎ ③ 当,即时,‎ 方程有两个不同的实根,,.‎ ‎+‎ ‎0‎ ‎_‎ ‎0‎ ‎+‎ 单调递增↑‎ 极大 单调递减↓‎ 极小 单调递增↑‎ 此时在上单调递增, 在是上单调递减, 在上单调递增.‎ ‎(20)(本小题满分13分)‎ 点在椭圆上,直线与直线垂直,O为坐标原点,直线OP的倾斜角为,直线的倾斜角为.‎ ‎(I)证明: 点是椭圆与直线的唯一交点;‎ ‎(II)证明:构成等比数列。‎ ‎(20)本小题主要考查直线和椭圆的标准方程和参数方程,直线和曲线的几何性质,等比数列等基础知识。考查综合运用知识分析问题、解决问题的能力。本小题满分13分。‎ 解:(I)(方法一)由得代入椭圆,‎ 得.‎ 将代入上式,得从而 因此,方程组有唯一解,即直线与椭圆有唯一交点P.‎ ‎(方法二)显然P是椭圆与的交点,若Q是椭圆与 的交点,代入的方程,得 即故P与Q重合。‎ ‎(方法三)在第一象限内,由可得 椭圆在点P处的切线斜率 切线方程为即。‎ 因此,就是椭圆在点P处的切线。‎ 根据椭圆切线的性质,P是椭圆与直线的唯一交点。‎ ‎(II)的斜率为的斜率为 由此得构成等比数列。‎ ‎(21)(本小题满分13分)‎ 首项为正数的数列满足 ‎(I)证明:若为奇数,则对一切都是奇数;‎ ‎(II)若对一切都有,求的取值范围。‎ ‎(21)本小题主要考查数列、数学归纳法和不等式的有关知识,考查推理论证、抽象概括、运算求解和探究能力,考查学生是否具有审慎思维的习惯和一定的数学视野。本小题满分13分。‎ 解:(I)已知是奇数,假设是奇数,其中为正整数,‎ 则由递推关系得是奇数。‎ 根据数学归纳法,对任何,都是奇数。‎ ‎(II)(方法一)由知,当且仅当或。‎ 另一方面,若则;若,则 根据数学归纳法,‎ 综合所述,对一切都有的充要条件是或。‎ ‎(方法二)由得于是或。‎ 因为所以所有的均大于0,因此与同号。‎ 根据数学归纳法,,与同号。‎ 因此,对一切都有的充要条件是或。‎ ‎2009年普通高等学校招生全国统一考试(安徽卷)‎ 数学(文科)‎ 本试卷分第I卷(选择题)和第II卷(非选择题)两部分。第I卷1至2页。第II卷3至页。全卷满分150分,考试时间120分钟。‎ 考生注意事项:‎ ‎1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。务必在答题卡背面规定的地方填写姓名和座位号后两位。‎ ‎2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目标号涂黑。如需改动,用橡皮擦干净后,再选题其他答案标号。‎ ‎3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置给出,确认后再用0.5毫米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出答题区域书写的答案无效。在试题卷、草稿纸上答题无效。‎ ‎4. 考试结束,务必将试题卷和答题卡一并上交。‎ 参考公式: ‎ 如果事件互斥,那么 S表示底面积,h表示底面上的高 ‎ 棱柱体积 V=Sh ‎ 棱锥体积 ‎ 第I卷(选择题 共50分)‎ 一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎1. i是虚数单位,i(1+i)等于 ‎ A.1+i B. -1-i C.1-i D. -1+i ‎2. 若集合,则是 ‎ A.{1,2,3} B. {1,2}‎ ‎ C. {4,5} D. {1,2,3,4,5}‎ ‎3.不等式组所表示的平面区域的面积等于 ‎ A. B. C. D. ‎ ‎4.“”是“且”的 ‎ ‎ A. 必要不充分条件 B. 充分不必要条件 ‎ ‎ C. 充分必要条件 D. 既不充分也不必要条件 ‎5.已知为等差数列,,则等于 ‎ A. -1 B. 1 C. 3 D.7‎ ‎6.下列曲线中离心率为的是 ‎ A. B. C. D. ‎ ‎7. 直线过点(-1,2)且与直线垂直,则的方程是 ‎ A. B.‎ ‎ C. D. ‎ ‎8.设,函数的图像可能是 ‎9.设函数,其中,则导数的取值范围是 ‎ ‎ A. B. C. D. ‎ ‎10.考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于 ‎ ‎ A.1 B. C. D. 0‎ ‎2009年普通高等学校招生全国统一考试(安徽卷)‎ 数学(文科)‎ 第II卷(非选择题 共100分)‎ 考生注意事项:‎ 请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。‎ 二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。‎ ‎11.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。‎ ‎12.程序框图(即算法流程图)如图所示,其输入结果是_______。‎ ‎13.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________。‎ ‎14.在平行四边形ABCD中,E和F分别是边CD和BC的中点,或=+‎ ‎,其中,R ,则+= _________。 ‎ ‎15.对于四面体ABCD,下列命题正确的是_________(写出所有正确命题的编号)。‎ ‎○11相对棱AB与CD所在的直线是异面直线;‎ ‎○22由顶点A作四面体的高,其垂足是BCD的三条高线的交点;‎ ‎○33若分别作ABC和ABD的边AB上的高,则这两条高的垂足重合;‎ ‎○44任何三个面的面积之和都大于第四个面的面积;‎ ‎○55分别作三组相对棱中点的连线,所得的三条线段相交于一点。‎ 三.解答题;本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。解答写在答题卡上的指定区域内。‎ ‎16.(本小题满分12分) ‎ 在ABC中,C-A=, sinB=。‎ ‎(I)求sinA的值;‎ ‎ (II)设AC=,求ABC的面积。‎ ‎17.(本小题满分12分)‎ ‎ 某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照 试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:‎ 品种A:357,359,367,368,375,388,392,399,400,405,414,‎ ‎ 415,421,423,423,427,430,430,434,443,445,451,454‎ 品种B:363,371,374,383,385,386,391,392,394,395,397‎ ‎ 397,400,401,401,403,406,407,410,412,415,416,422,430‎ ‎(Ⅰ)完成所附的茎叶图 ‎(Ⅱ)用茎叶图处理现有的数据,有什么优点?‎ ‎(Ⅲ)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论。‎ ‎18.(本小题满分12分)‎ 已知椭圆(a>b>0)的离心率为,以原点为圆心。椭圆短半轴长半径的 圆与直线y=x+2相切,‎ ‎(Ⅰ)求a与b;‎ ‎(Ⅱ)设该椭圆的左,右焦点分别为和,直线过且与x轴垂直,动直线与y轴垂直,交与点p..求线段P垂直平分线与的交点M的轨迹方程,并指明曲线类型。‎ ‎19.(本小题满分12分)‎ 已知数列{} 的前n项和,数列{}的前n项和 ‎(Ⅰ)求数列{}与{}的通项公式;‎ ‎(Ⅱ)设,证明:当且仅当n≥3时,< ‎ ‎20.(本小题满分13分)‎ 如图,ABCD的边长为2的正方形,直线l与平面ABCD平行,g和F式l上的两个不同点,且EA=ED,FB=FC, 和是平面ABCD内的两点,和都与平面ABCD垂直,‎ ‎(Ⅰ)证明:直线垂直且平分线段AD:‎ ‎(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面体ABCDEF的体积。‎ ‎21.(本小题满分14分)‎ ‎ 已知函数,‎ ‎(Ⅰ)讨论的单调性;‎ ‎(Ⅱ)设a=3,求在区间{1,}上值域。期中e=2.71828…是自然对数的底数。‎ ‎2009年普通高等学校招生全国统一考试(安徽卷)‎ 数学(文科)参考答案 一、选择题 ‎1- 10 D B C A B B A C D A ‎ 二、填空题 ‎11.【解析】设由可得故 ‎ ‎【答案】(0,-1,0)‎ ‎12. 【解析】根据流程图可得的取值依次为1、3、7、15、31、63……‎ ‎【答案】127‎ ‎13. 【解析】依据四条边长可得满足条件的三角形有三种情况:‎ ‎2、3、4或3、4、5或2、4、5,故=0.75.‎ ‎【答案】0.75‎ ‎14.【解析】设、则 , ,‎ 代入条件得 ‎【答案】4/3‎ ‎15. 【解析】由空间四面体棱,面关系可判断①④⑤正确,可举例说明②③错误.‎ ‎【答案】①④⑤‎ 解答题 ‎16. 【思路】(1)依据三角函数恒等变形可得关于的式子,这之中要运用到倍角公式;‎ ‎(2)应用正弦定理可得出边长,进而用面积公式可求出.‎ ‎【解析】(1)∵∴‎ ‎∴‎ ‎∴‎ 又 ∴‎ ‎(2)如图,由正弦定理得∴‎ ‎∴.‎ ‎17. 【思路】由统计知识可求出A、B两种品种的小麦稳定性大小并画出茎叶图,用茎叶图处理数据,看其分布就比较明了。‎ ‎【解析】(1)茎叶图如图所示 A B ‎9 7‎ ‎35‎ ‎8 7‎ ‎36‎ ‎3‎ ‎5‎ ‎37‎ ‎1 4‎ ‎8‎ ‎38‎ ‎3 5 6‎ ‎9 2‎ ‎39‎ ‎1 2 4 457 7‎ ‎5 0‎ ‎40‎ ‎0 1 1 3 6 7‎ ‎5 4 2‎ ‎41‎ ‎0 2 5 6‎ ‎7 3 3 1‎ ‎42‎ ‎2‎ ‎4 0 0‎ ‎43‎ ‎0‎ ‎5 5 3‎ ‎44‎ ‎4 1‎ ‎45‎ ‎(2)用茎叶图处理现有的数据不仅可以看出数据的分布状况,而且可以看出每组中的具体数据.‎ ‎(3)通过观察茎叶图,可以发现品种A的平均每亩产量为411.1千克,品种B的平均亩产量为397.8千克.由此可知,品种A的平均亩产量比品种B的平均亩产量高.但品种A的亩产量不够稳定,而品种B的亩产量比较集中D平均产量附近.‎ ‎18. 【思路】(1)由椭圆建立a、b等量关系,再根据直线与椭圆相切求出a、b.‎ ‎(2)依据几何关系转化为代数方程可求得,这之中的消参就很重要了。‎ ‎【解析】(1)由于 ∴ ∴ 又 ∴b2=2,a2=3因此,.‎ ‎(2)由(1)知F1,F2两点分别为(-1,0),(1,0),由题意可设P(1,t).(t≠0).那么线段PF1中点为,设M(x、y)是所求轨迹上的任意点.由于则消去参数t得 ‎,其轨迹为抛物线(除原点)‎ ‎19. 【思路】由可求出,这是数列中求通项的常用方法之一,在求出后,进而得到,接下来用作差法来比较大小,这也是一常用方法。‎ ‎【解析】(1)由于 当时, ‎ 又当时 数列项与等比数列,其首项为1,公比为 ‎(2)由(1)知 由即即 又时成立,即由于恒成立.‎ 因此,当且仅当时, ‎ ‎20. 【思路】根据空间线面关系可证线线垂直,由分割法可求得多面体体积,体现的是一种部分与整体的基本思想。‎ ‎【解析】(1)由于EA=ED且 点E在线段AD的垂直平分线上,同理点F在线段BC的垂直平分线上.‎ 又ABCD是四方形 线段BC的垂直平分线也就是线段AD的垂直平分线 即点EF都居线段AD的垂直平分线上.‎ 所以,直线EF垂直平分线段AD.‎ ‎(2)连接EB、EC由题意知多面体ABCD可分割成正四棱锥E—ABCD和正四面体E—BCF两部分.设AD中点为M,在Rt△MEE中,由于ME=1, .‎ ‎—ABCD 又—BCF=VC-BEF=VC-BEA=VE-ABC 多面体ABCDEF的体积为VE—ABCD+VE—BCF=‎ ‎21. 【思路】由求导可判断得单调性,同时要注意对参数的讨论,即不能漏掉,也不能重复。第二问就根据第一问中所涉及到的单调性来求函数在上的值域。‎ ‎【解析】(1)由于 令 ‎①当,即时, 恒成立.‎ 在(-∞,0)及(0,+∞)上都是增函数.‎ ‎②当,即时 由得或 或或 又由得 综上①当时, 在上都是增函数.‎ ‎②当时, 在上是减函数,‎ 在上都是增函数.‎ ‎(2)当时,由(1)知在上是减函数.‎ 在上是增函数.‎ 又 函数在上的值域为 ‎2010年普通高等学校招生全国统一考试(安徽卷)‎ 理科数学测试 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试用时120分钟.‎ 注意事项:‎ ‎1.答卷前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.‎ ‎2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.‎ ‎3.答第Ⅱ卷时,必须使用0.5毫米黑色黑水签字笔在答题卡上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色签际笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.‎ ‎4.考试结束,务必将试题卷和答题卡一并上交.‎ 参考公式:‎ ‎ 如果事件A与B互斥,那么 ‎ 如果A与B是两个任意事件,,那么 ‎ 如果事件A与B相互独立,那么 ‎ ‎ ‎ 第Ⅰ卷(选择题 共50分)‎ 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎(1)是虚数单位,‎ ‎(A) (B) (C) (D)‎ ‎(2)若集合,则 ‎(A) (B)‎ ‎(C) (D)‎ ‎(3)设向量,则下列结论中正确的是 ‎ (A) (B) (C)垂直 (D)‎ ‎(4)若是R上周期为5的奇函数,且满足则=‎ ‎ (A)-1 (B)1 (C)-2 (D)2‎ ‎(5)双曲线方程为,则它的右焦点坐标为 ‎ (A) (B) (C) (D)‎ ‎(6)设,二次函数的图象可能是 ‎(7)设曲线C的参数方程为(为参数),‎ 直线的方程为,则曲线C到直线的距 离为的点的个数为 ‎ (A)1 (B)2 ‎ ‎ (C)3 (D)4‎ ‎(8)一个几何全体的三视图如图,该几何体的表面积为 ‎ (A)280 (B)292 ‎ ‎ (C)360 (D)372‎ ‎(9)动点在圆上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知定时t=0时,点A的坐标是,则当时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是 ‎ (A)[0,1] (B)[1,7] (C)[7,12] (D)[0,1]和[7,12]、‎ ‎(10)设是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是 ‎ (A) (B)‎ ‎ (C) (D)‎ ‎(在此卷上答题无效)‎ 绝密★启用并使用完毕前 ‎2010年普通高等学校招生全国统一考试(安徽卷)‎ 数 学(理科)‎ 第Ⅱ卷(非选择题 共100分)‎ 考生注意事项:‎ ‎ 请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.‎ 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.‎ ‎(11)命题“对任何”的否定是 .‎ ‎(12)的展开式中,的系数等于 .‎ ‎(13)设满足约束条件若目标函数的最大值为8,则的最小值为 .‎ ‎(14)如图所示,程序框图(算法流程图)的输出值 .‎ ‎(15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红 球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,‎ 分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球 的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球 是红球的事件,则下列结论中正确的是  (写出所有正确结 论的编号).‎ ‎ ①;‎ ‎ ②;‎ ‎ ③事件B与事件A1相互独立;‎ ‎ ④A1,A2,A3是两两互斥的事件;‎ ‎ ⑤的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关.‎ 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内.‎ ‎(16)(本小题满分12分)‎ ‎ 设是锐角三角形,分别是内角A,B,C所对边长,并且 ‎ (Ⅰ)求角A的值;‎ ‎ (Ⅱ)若,求(其中).‎ ‎(17)(本小题满分12分)‎ 设a为实数,函数 ‎ (I)求的单调区间与极值;‎ ‎ (II)求证:当时,‎ ‎(18)(本小题满分13分)‎ 如图,在多面体ABCDEF中,四边形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF,‎ BF=FC,H为BC的中点.‎ ‎ (I)求证:FH//平面EDB;‎ ‎ (II)求证:AC⊥平面EDB;‎ ‎ (III)求二面角B—DE—C的大小. ‎ ‎(19)(本小题满分13分)‎ 已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 ‎ (I)求椭圆E的方程;‎ ‎ (II)求的角平分线所在直线的方程;‎ ‎ (III)在椭圆E上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由.‎ ‎(20)(本小题满分12分)‎ 设数列中的每一项都不为0.‎ 证明,为等差数列的充分必要条件是:对任何,都有 ‎(21)(本小题满分13分)‎ 品酒师需要定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序,经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.‎ 现设n=4,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令 则X是对两次排序的偏离程度的一种描述.‎ ‎ (I)写出X的可能值集合;‎ ‎ (II)假设等可能地为1,2,3,4的各种排列,求X的分布列;‎ ‎ (III)某品酒师在相继进行的三轮测试中,都有,‎ ‎ (i)试按(II)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);‎ ‎ (ii)你认为该品酒师的酒味鉴别功能如何?说明理由.‎ 参考答案 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎(1)B (2)A (3)C (4)A (5)C ‎(6)D (7)B (8)C (9)D (10)D 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.‎ ‎(11)存在 ‎(12)15(若只写,也可)‎ ‎(13)4 (14)12 (15)②④‎ 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内.‎ ‎(16)(本小题满分12分)‎ ‎ ‎ ‎ 本题考查两角和的正弦公式,同角三角函数的基本关系,特殊角的三角函数值,向量的数量积,利用余弦定理解三角形等有关知识,考查综合运算求解能力.‎ ‎ 解:(I)因为 ‎ ‎ ‎ (II)由可得 ‎ ①‎ ‎ 由(I)知所以 ‎ ②‎ 由余弦定理知及①代入,得 ‎③+②×2,得,所以 因此,c,b是一元二次方程的两个根.‎ 解此方程并由 ‎(17)(本小题满分12分)‎ 本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力.‎ ‎ (I)解:由 令的变化情况如下表:‎ ‎—‎ ‎0‎ ‎+‎ 单调递减 单调递增 故的单调递减区间是,单调递增区间是,‎ 处取得极小值,‎ 极小值为 ‎ (II)证:设 于是 由(I)知当 于是当 而 即 ‎(18)(本小题满分13分)‎ ‎ 本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力.‎ ‎ [综合法](1)证:设AC与BD交于点G,则G为AC的中点,连EG,GH,‎ ‎ 又H为BC的中点,‎ ‎ ∴四边形EFHG为平行四边形,‎ ‎∴EG//FH,而EG平面EDB,∴FH//平面EDB.‎ ‎ (II)证:由四边形ABCD为正方形,有AB⊥BC,又EF//AB,‎ ‎∴EF⊥BC.‎ 而EF⊥FB,∵EF⊥平面BFC,∴EF⊥FH,∴AB⊥FH.‎ 又BF=FC,H为BC的中点,∴FH⊥BC.‎ ‎∴FH⊥平面ABCD,∴FH⊥AC,‎ 又FH//BC,∴AC=EG.‎ 又AC⊥BD,EGBD=G,∴AG⊥平面EDB.‎ ‎ (III)解:EF⊥FB,∠BFC=90°,∴BF⊥平面CDEF, ‎ 在平面CDEF内过点F作FK⊥DE交DE的延长线于K,‎ 则∠FKB为二面角B—DE—C的一个平面角.‎ 设EF=1,则AB=2,FC=,DE=‎ 又EF//DC,∴∠KEF=∠EDC,∴sin∠EDC=sin∠KEF=‎ ‎∴FK=EFsin∠KEF=,tan∠FKB=∴∠FKB=60°‎ ‎∴二面角B—DE—C为60°.‎ ‎[向量法]‎ ‎∵四边形ABCD为正方形,∴AB⊥BC,又EF//AB,∴EF⊥BC.‎ 又EF⊥FB,∴EF⊥平面BFC.‎ ‎∴EF⊥FH,∴AB⊥FH.‎ 又BF=FC,H为BC的中点,∴FH⊥BC,∴FH⊥平面ABC.‎ 以H为坐标原点,轴正向,轴正向, ‎ 建立如图所示坐标系.‎ 设BH=1,则A(1,—2,0),B(1,0,0),‎ C(—1,0,0),D(—1,—2,0),E(0,—1,1),‎ F(0,0,1).‎ ‎ (I)证:设AC与BD的交点为G,连GE,GH,‎ 则 平面EDB,HF不在平面EDB内,∴FH∥平面EBD,‎ ‎ (II)证: ‎ 又AC⊥BD,EG∩BD=G,∴AC⊥平面EDB.‎ ‎ (III)解:‎ 设平面BDE的法向量为 则 即二面角B—DE—C为60°.‎ ‎(19)(本小题满分13分)‎ ‎ 本题考查椭圆的定义及标准方程,椭圆的简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式,点关于直线的对称等基础知识;考查解析几何的基本思想、综合运算能力、探究意识与创新意识.‎ 解:(I)设椭圆E的方程为 将A(2,3)代入上式,得 ‎∴椭圆E的方程为 ‎ (II)解法1:由(I)知,所以 直线AF1的方程为:‎ 直线AF2的方程为:‎ 由点A在椭圆E上的位置知,直线l的斜率为正数.‎ 设上任一点,则 若(因其斜率为负,舍去).‎ 所以直线l的方程为:‎ 解法2:‎ ‎ (III)解法1:‎ 假设存在这样的两个不同的点 由于M在l上,故 ①‎ 又B,C在椭圆上,所以有 两式相减,得 即 将该式写为,‎ 并将直线BC的斜率和线段BC的中点,表示代入该表达式中,‎ 得 ②‎ ‎①×2—②得,即BC的中点为点A,而这是不可能的.‎ ‎∴不存在满足题设条件的点B和C.‎ 解法2:‎ 假设存在,‎ 则 得一元二次方程 则是该方程的两个根,‎ 由韦达定理得 于是 ‎∴B,C的中点坐标为 又线段BC的中点在直线 即B,C的中点坐标为(2,3),与点A重合,矛盾.‎ ‎∴不存在满足题设条件的相异两点.‎ ‎(20)(本小题满分12分)‎ 本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.‎ 证:先证必要性 设数列则所述等式显然成立,‎ 若,则 再证充分性.‎ 证法1:(数学归纳法)设所述的等式对一切都成立,首先,在等式 ‎ ①‎ 两端同乘成等差数列,‎ 记公差为 假设时,观察如下二等式 ‎ ②‎ ‎, ③‎ 将②代入③,得 在该式两端同乘 将 由数学归纳法原理知,对一切 所以的等差数列.‎ 证法2:[直接证法]依题意有 ‎ ①‎ ‎ ②‎ ‎②—①得 ‎,‎ 在上式两端同乘 同理可得 ③‎ ‎③—④得 即是等差数列,‎ ‎(21)(本小题满分13分)‎ 本题考查离散型随机变量及其分布列,考查在复杂场合下进行计数的能力,能过设置密切贴近生产、生活实际的问题情境,考查概率思想在现实生活中的应用,考查抽象概括能力、应用与创新意识.‎ 解:(I)X的可能值集合为{0,2,4,6,8}.‎ 在1,2,3,4中奇数与偶数各有两个,所以中的奇数个数等于中的偶数个数,因此的奇偶性相同,‎ 从而必为偶数.‎ X的值非负,且易知其值不大于8.‎ 容易举出使得X的值等于0,2,4,6,8各值的排列的例子.‎ ‎ (II)可用列表或树状图列出1,2,3,4的一共24种排列,计算每种排列下的X值,在等可能的假定下,得到 X ‎0 2 4 6 8‎ P ‎ ‎ ‎ (III)(i)首先,将三轮测试都有的概率记做p,由上述结果和独立性假设,得 ‎ ‎ ‎ (ii)由于是一个很小的概率,这表明如果仅凭随机猜测得到三轮测试都有的结果的可能性很小,所以我们认为该品酒师确实有良好的味觉鉴别功能,不是靠随机猜测.‎ ‎2010年普通高等学校招生全国统一考试(安徽卷)‎ 数学文科测试 ‎ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。全卷满分l50分,考试时间l20分钟。‎ 参考公式:‎ ‎ S表示底面积,h表示底面上的高 如果事件A与B互斥,那么 棱柱体积V=Sh ‎ P(A+B)=P(A)+P(B) 棱锥体积V=‎ 第Ⅰ卷(选择题 共50分)‎ 一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.‎ ‎(1)若A=,B=,则=‎ ‎ (A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)‎ ‎(2)已知,则i()=‎ ‎ (A) (B) (C) (D)‎ ‎ (3)设向量,,则下列结论中正确的是 ‎(A) (B)‎ ‎(C) (D)与垂直 ‎(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是 ‎(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0‎ ‎ (5)设数列{}的前n项和=,则的值为 ‎(A) 15 (B) 16 (C) 49 (D)64‎ ‎(6)设abc>0,二次函数f(x)=ax2+bx+c的图像可能是 ‎(7)设a=,b=,c=,则a,b,c的大小关系是 ‎(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a ‎(8)设x,y满足约束条件则目标函数z=x+y的最大值是 ‎(A)3 (B) 4 (C) 6 (D)8‎ ‎(9)一个几何体的三视图如图,该几何体的表面积是 ‎(A)372 (C)292 ‎ ‎(B)360 (D)280‎ ‎ ‎ ‎(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是 ‎(A) (B) (C) (D)‎ 数 学(文科)(安徽卷)‎ 第Ⅱ卷(非选择题共100分)‎ 二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置·‎ ‎(11)命题“存在x∈R,使得x2+2x+5=0”的否定是 ‎ 解析:依据“存在”的否定为“任何、任意”,易知.‎ ‎(12)抛物线y2=8x的焦点坐标是 ‎ ‎ (13)如图所示,程序框图(算法流程图)的输出值x= ‎ ‎ (14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .‎ ‎ (15)若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是 . (写出所有正确命题的编号).‎ ‎①ab≤1; ②+≤; ③a2+b2≥2; ④a3+b3≥3; ‎ 三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.‎ (16) ‎△ABC的面积是30,内角A,B,C,所对边长分别为a,b,c,cosA=.‎ (1) 求 (2) 若c-b=1,求a的值.‎ ‎(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.‎ (17) 椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率.‎ (1) 求椭圆E的方程;‎ (2) 求∠F1AF2的角平分线所在直线的方程.‎ ‎(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.‎ ‎18、(本小题满分13分)‎ ‎ 某市2010年4月1日—4月30日对空气污染指数的检测数据如下(主要污染物为可吸入颗粒物):‎ ‎ 61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,‎ ‎ 77,86,81,83,82,82,64,79,86,85,75,71,49,45,‎ ‎(Ⅰ) 完成频率分布表;‎ ‎(Ⅱ)作出频率分布直方图;‎ ‎(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。‎ 请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.‎ ‎(本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识.‎ (19) ‎(本小题满分13分)‎ 如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,‎ ‎(Ⅰ)求证:FH∥平面EDB;‎ ‎(Ⅱ)求证:AC⊥平面EDB; ‎ ‎(Ⅲ)求四面体B—DEF的体积;‎ ‎(本小题满分13分)本题考查空间线面平行,线面垂直,面面垂直,体积的计算等基础知识,同时考查空间想象能力与推理论证能力.‎ ‎(20)(本小题满分12分)‎ ‎ 设函数f(x)=sinx-cosx+x+1, 0﹤x﹤2 ,求函数f(x)的单调区间与极值.‎ ‎(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力.‎ ‎(21)(本小题满分13分)‎ 设,...,,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y=x相切,对每一个正整数n,圆都与圆相互外切,以表示的半径,已知为递增数列.‎ ‎(Ⅰ)证明:为等比数列;‎ ‎(Ⅱ)设=1,求数列的前n项和. ‎ ‎(本小题满分13分)本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象能力以及推理论证能力.‎ 绝密★启用前 参考答案 第Ⅰ卷(选择题 共50分)‎ 一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.‎ ‎(1)C 解析:画数轴易知.‎ ‎(2)B 解析:直接计算.‎ ‎(3)D 解析:利用公式计算,采用排除法.‎ ‎(4)A 解析:利用点斜式方程.‎ ‎(5)A 解析:利用=S8-S7,即前8项和减去前7项和.‎ ‎(6)D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合abc>0产生矛盾,采用排除法易知.‎ ‎(7)A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.‎ ‎(8)C 解析:画出可行域易求.‎ ‎(9)B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.‎ ‎ ‎ ‎(10)C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.‎ 第Ⅱ卷(非选择题共100分)‎ 二.填空题:本大题共5小题,每小题5分,共25分.‎ ‎ (11)对任何X∈R,都有X2+2X+5≠0 ‎ 解析:依据“存在”的否定为“任何、任意”,易知.‎ ‎(12)(2,0) 解析:利用定义易知.‎ ‎(13)12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.‎ ‎(14)5.7% 解析: ,,易知.‎ ‎(15)①,③,⑤ 解析:①,⑤化简后相同,令a=b=1排除②、易知④ ,再利用易知③正确 三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.‎ ‎(16)解:由cosA=,得sinA= =.‎ 又bc sinA=30,∴bc=156. ‎ ‎(1)=bc cosA=156·=144.‎ ‎(2)a2=b2+c2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2·156·(1-)=25,‎ ‎∴a=5‎ ‎(17)解:(1)设椭圆E的方程为 由e=,得=,b2=a2-c2 =3c2. ∴ 将A(2,3)代入,有 ,解得:c=2, 椭圆E的方程为 ‎(Ⅱ)由(Ⅰ)知F1(-2,0),F2(2,0),所以直线AF1的方程为 y=(X+2),‎ 即3x-4y+6=0. 直线AF2的方程为x=2. 由椭圆E的图形知,‎ ‎∠F1AF2的角平分线所在直线的斜率为正数.‎ 设P(x,y)为∠F1AF2的角平分线所在直线上任一点,‎ 则有 若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去.‎ 于是3x-4y+6=-5x+10,即2x-y-1=0.‎ 所以∠F1AF2的角平分线所在直线的方程为2x-y-1=0.‎ ‎18、解:(Ⅰ) 频率分布表:‎ 分 组 频 数 频 率 ‎[41,51)‎ ‎2‎ ‎[51,61)‎ ‎1‎ ‎[61,71)‎ ‎4‎ ‎[71,81)‎ ‎6‎ ‎[81,91)‎ ‎10‎ ‎[91,101)‎ ‎5‎ ‎[101,111)‎ ‎2‎ 空气污染指数 ‎4151 61 71 81 91 101 111‎ 频率 组距 ‎ (Ⅱ)频率分布直方图:‎ ‎(Ⅲ)答对下述两条中的一条即可:‎ ‎(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的. 有26天处于良好的水平,占当月天数的. 处于优或良的天数共有28天,占当月天数的. 说明该市空气质量基本良好.‎ ‎(ii)轻微污染有2天,占当月天数的. 污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的,超过50%. 说明该市空气质量有待进一步改善.‎ ‎(19) (Ⅰ) 证:设AC与BD交于点G,则G为AC的中点. 连EG,GH,由于H为BC的中点,故GH∥AB且 GH=AB 又EF∥AB且 EF=AB ‎∴EF∥GH. 且 EF=GH ∴四边形EFHG为平行四边形.‎ ‎∴EG∥FH,而EG 平面EDB,∴FH∥平面EDB.‎ ‎(Ⅱ)证:由四边形ABCD为正方形,有AB⊥BC.‎ 又EF∥AB,∴ EF⊥BC. 而EF⊥FB,∴ EF⊥平面BFC,∴ EF⊥FH.‎ ‎∴ AB⊥FH.又BF=FC H为BC的中点,FH⊥BC.∴ FH⊥平面ABCD.‎ ‎∴ FH⊥AC. 又FH∥EG,∴ AC⊥EG. 又AC⊥BD,EG∩BD=G,‎ ‎∴ AC⊥平面EDB.‎ ‎(Ⅲ)解:∵ EF⊥FB,∠BFC=90°,∴ BF⊥平面CDEF.‎ ‎∴ BF为四面体B-DEF的高. 又BC=AB=2, ∴ BF=FC= ‎ ‎(20)解:由f(x)=sinx-cosx+x+1,0﹤x﹤2,‎ 知=cosx+sinx+1,‎ 于是=1+sin(x+ ).‎ 令=0,从而sin(x+ )=-,得x= ,或x=.‎ 当x变化时,,f(x)变化情况如下表:‎ X ‎(0, )‎ ‎(,)‎ ‎(,2 )‎ ‎+‎ ‎0‎ ‎-‎ ‎0‎ ‎+‎ f(x)‎ 单调递增↗‎ ‎+2‎ 单调递减↘‎ 单调递增↗‎ 因此,由上表知f(x)的单调递增区间是(0, )与(,2 ),单调递减区间是(,),极小值为f()=,极大值为f()= +2.‎ ‎)‎ ‎(21)解:(Ⅰ)将直线y=x的倾斜角记为 , 则有tan = ,sin =.‎ 设Cn的圆心为(,0),则由题意知= sin = ,得 = 2 ;同理,题意知将 = 2代入,解得 rn+1=3rn.‎ 故{ rn }为公比q=3的等比数列.‎ ‎(Ⅱ)由于r1=1,q=3,故rn=3n-1,从而 =n·,‎ 记Sn=, 则有 Sn=1+2·3-1+3·3-2+………+n·. ①‎ ‎=1·3-1+2·3-2+………+(n-1) ·+n·. ② ①-②,得 ‎=1+3-1 +3-2+………+-n· =- n·= –(n+)· ‎ Sn= – (n+)·.‎ ‎2011年普通高等学校招生全国统一考试(安徽卷)‎ 数学(理科)‎ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。全卷满分150分,考试时间120分钟。‎ 考生注意事项:‎ 1. 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。务必在答题卡背面规定的地方填写姓名和座位号后两位。‎ 2. 答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。‎ 3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出书写的答案无效,在试题卷、草稿纸上答题无效。‎ 4. 考试结束后,务必将试题卷和答题卡一并上交。‎ 参考公式:‎ 如果事件A与B 互斥, 椎体体积,其中S为椎体的底面积,‎ 那么 h为椎体的高.‎ 如果事件A与B 相互独立,那么 第Ⅰ卷(选择题 共50分)‎ 一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎(1) 设是虚数单位,复数为纯虚数,则实数a 为 ‎ (A) 2 (B) -2 (C) - (D) ‎ ‎(2) 双曲线的实轴长是 ‎(A)2 (B) (C)4 (D) ‎ ‎(3)设是定义在R上的奇函数,当时,, ‎ ‎ (A)-3 (B) -1 (C)1      (D)3‎ ‎(4)设变量,满足,则的最大值和最小值分别为 ‎(A)1,-1   (B)2,-2  (C)1,-2  (D)2,-1‎ ‎(5) 在极坐标系中,点 到圆 的圆心的距离为 ‎(A)2 (B) (C) (D) ‎ ‎(6)一个空间几何体得三视图如图所示,则该几何体的表面积为 ‎(A) 48 (B) (C) (D) 80‎ ‎(7)命题“所有能被2整除的数都是偶数”的否定是 ‎(A)所有不能被2整除的数都是偶数 ‎(B)所有能被2整除的数都不是偶数 ‎(C)存在一个不能被2整除的数都是偶数 ‎(D)存在一个不能被2整除的数都不是偶数 ‎(8)设集合,则满足且的集合为 ‎(A)57 (B)56 (C)49 (D)8‎ ‎(9)已知函数,其中为实数,若对恒成立,且,则的单调递增区间是 ‎(A) (B)‎ ‎(C) (D)‎ ‎(10)函数 在区间上的图像如图所示,则m,n的值可能是 ‎ (A)m=1, n=1 (B)m=1, n=2‎ ‎ (C)m=2, n=1 (D)m=3, n=1‎ 第II卷(非选择题 共100分)‎ 考生注意事项:‎ 请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.‎ 二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.‎ ‎(11)如图所示,程序框图(算法流程图)的输出结果是 .‎ ‎(12)设,则=_________ .‎ ‎(13)已知向量,满足,,,则与的夹角为________.‎ ‎(14)已知 的一个内角为120o,并且三边长构成公差为4的等差数列,则的面积为_______________‎ ‎(15)在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号).‎ ‎①存在这样的直线,既不与坐标轴平行又不经过任何整点 ‎②如果与都是无理数,则直线不经过任何整点 ‎③直线经过无穷多个整点,当且仅当经过两个不同的整点 ‎④直线经过无穷多个整点的充分必要条件是:与都是有理数 ‎⑤存在恰经过一个整点的直线 三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.‎ ‎(16)(本小题满分12分)‎ 设,其中为正实数 ‎(Ⅰ)当时,求的极值点;‎ ‎(Ⅱ)若为上的单调函数,求的取值范围。‎ ‎(17)(本小题满分12分)‎ 如图,为多面体,平面与平面垂直,点在线段 上,‎ ‎,,、、、都是正三角形.‎ ‎(Ⅰ)证明直线;‎ ‎(Ⅱ)求棱锥的体积.‎ ‎(18)(本小题满分13分)‎ 在数1和100之间插入个实数,使得这个实数构成递增的等比数列,将这个数的乘积记作,再令 ‎(Ⅰ)求数列的通项公式;‎ ‎(Ⅱ)设,求数列的前项和.‎ ‎(19)(本小题满分12分)‎ ‎(Ⅰ)设,证明 ‎(Ⅱ),证明 ‎.‎ ‎(20)(本小题满分13分)‎ 工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.‎ ‎(Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?‎ ‎(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);‎ ‎(Ⅲ)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。‎ ‎(21)(本小题满分13分)‎ 设,点的坐标为(1,1),点在抛物线上运动,点满足 ‎,经过点与轴垂直的直线交抛物线于点,点满足, 求点的轨迹方程。‎ ‎2011年普通高等学校招生全国统一考试(安徽卷)‎ 数学(文科)‎ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。全卷满分150分,考试时间120分钟。‎ 考生注意事项:‎ 1. 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。务必在答题卡背面规定的地方填写姓名和座位号后两位。‎ 2. 答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。‎ 3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出书写的答案无效,在试题卷、草稿纸上答题无效。‎ 4. 考试结束后,务必将试题卷和答题卡一并上交。‎ 参考公式:‎ ‎1、锥体体积公式:V=Sh, 其中S是锥体的底面积,h是锥体的高。‎ ‎2、若(x,y),(x,y)…,(x,y)为样本点,为回归直线,则,‎ ‎, , ‎ 第Ⅰ卷(选择题 共50分)‎ 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎(1)设是虚数单位,复数为纯虚数,则实数为( )‎ ‎(A) 2 (B) -2 (C) - (D) ‎ ‎(2)集合则等于( )‎ ‎(A) (B) (C) (D) ‎ ‎(3) 双曲线的实轴长是( )‎ ‎(A)2 (B) (C)4 (D) ‎ ‎(4)若直线过圆的圆心,则的值为( )‎ ‎ (A)-1 (B) 1 (C)3 (D)-3‎ ‎(5)若点在图像上,,则下列点也在此图像上的是( )‎ ‎(A) (B) (C) (D)‎ ‎(6)设变量,满足 ,则的最大值和最小值分别为( ) ‎ ‎ (A)1,1 (B)2, 2 (C)1, 2 (D)2,1‎ ‎(7)若数列的通项公式是,则…( )‎ ‎(A)15 (B)12 (C)12 (D) 15‎ ‎(8)一个空间几何体的三视图如图所示,则该几何体的表面积为( ) ‎ ‎(A)48 (B)32+ (C)48+ (D)80‎ ‎(9)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )‎ ‎(A) (B) (C) (D)‎ ‎(10)函数在区间上的图像如图所示,则可能是( )‎ ‎(A)1 (B)2 (C)3 (D)4‎ 第 Ⅱ卷 (非选择题 共100分) ‎ 二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。‎ ‎(11)设是定义在R上的奇函数,当时,, ‎ ‎______ .‎ ‎(12)如图所示,程序框图(算法流程图)的输出结果是___________.‎ ‎(13)函数的定义域是___________.‎ ‎(14)已知向量,满足,,,则与的夹角为________.‎ ‎(15)设,若对一切恒成立,则 ‎①; ‎ ‎ ②;‎ ‎③既不是奇函数也不是偶函数;‎ ‎④的单调递增区间是;‎ ‎⑤ 存在经过点(a,b)的直线与函数的图像不相交.‎ 以上结论正确的是_______________________(写出所有正确结论的编号).‎ ‎2011年普通高等学校招生全国统一考试(安徽卷)‎ 数 学(文科)‎ 第II卷(非选择题 共100分)‎ 考生注意事项:‎ 请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.‎ 三、简答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.‎ ‎(16)(本小题满分13分)‎ 在中,a,b,c分别为内角A,B,C所对的边长,a=,b=,,求边BC上的高.‎ ‎(17)(本小题满分13分)‎ ‎,,其中实数满足.‎ ‎(Ⅰ)证明与相交;‎ ‎(Ⅱ)证明与的交点在椭圆上.‎ ‎(18)(本小题满分13分)‎ 设函数,其中为正实数 ‎(Ⅰ)当 时,求的极值点;‎ ‎(Ⅱ) 若为上的单调函数,求的取值范围.‎ ‎(19)(本小题满分13分)‎ 如图,为多面体,平面与平面垂直,点在线段 上,,,、、、都是正三角形.‎ ‎(Ⅰ)证明直线;‎ ‎(Ⅱ)求棱锥的体积.‎ ‎(20)(本小题满分10分)‎ 某地最近十年粮食需求量逐年上升,下表是部分统计数据:‎ 年 份 ‎2002‎ ‎2004‎ ‎2006‎ ‎2008‎ ‎2010‎ 需求量(万吨)‎ ‎236‎ ‎246‎ ‎257‎ ‎276‎ ‎286‎ ‎(Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程 ;‎ ‎(Ⅱ)利用(Ⅰ)中所求的直线方程预测该地2012年的粮食需求量.‎ 温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.‎ ‎(21)(本小题满分13分)‎ 在数1和100之间插入个实数,使得这个实数构成递增的等比数列,将这个数的乘积记作,再令 ‎(Ⅰ)求数列的通项公式;‎ ‎(Ⅱ)设,求数列的前项和.‎ ‎2011年安徽高考文科数学试题答案
查看更多

相关文章

您可能关注的文档