- 2021-05-13 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
江苏专用2018高考数学一轮复习导数及其应用利用导数研究函数的极值最值课时分层训练
第四章 导数及其应用 第18课 利用导数研究函数的极值、最值课时分层训练 A组 基础达标 (建议用时:30分钟) 一、填空题 1.当函数y=x·2x取极小值时,x等于________. - [令y′=2x+x·2xln 2=0, ∴x=-. 经验证,-为函数y=x·2x的极小值点.] 2.函数y=ln x-x在x∈(0,e]上的最大值为________. -1 [函数y=ln x-x的定义域为(0,+∞). 又y′=-1=,令y′=0得x=1, 当x∈(0,1)时,y′>0,函数单调递增; 当x∈(1,e]时,y′<0,函数单调递减. 当x=1时,函数取得最大值-1.] 3.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是________. (-∞,-3)∪(6,+∞) [∵f′(x)=3x2+2ax+(a+6), 由已知可得f′(x)=0有两个不相等的实根, ∴Δ=4a2-4×3(a+6)>0,即a2-3a-18>0, ∴a>6或a<-3.] 4.设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数f(x)ex的一个极值点,则下列图象不可能为y=f(x)图象的是________.(填序号) 【导学号:62172101】 ① ② ③ ④ 图183 ④ [因为[f(x)ex]′=f′(x)ex+f(x)(ex)′=[f(x)+f′(x)]ex,且x=-1为函数f(x)ex的一个极值点,所以f(-1)+f′(-1)=0.选项④中,f(-1)>0,f ′(-1)>0,不满足f′(-1)+f(-1)=0.] 5.函数f(x)=x3+x2-3x-4在[0,2]上的最小值是________. - [f′(x)=x2+2x-3,令f′(x)=0得x=1(x=-3舍去),又f(0)=-4,f(1)=-,f(2)=-,故f(x)在[0,2]上的最小值是f(1)=-.] 6.设a∈R,若函数y=ex+ax有大于零的极值点,则实数a的取值范围是________. (-∞,-1) [∵y=ex+ax,∴y′=ex+a. ∵函数y=ex+ax有大于零的极值点, 则方程y′=ex+a=0有大于零的解, ∵x>0时,-ex<-1,∴a=-ex<-1.] 7.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)=________. 【导学号:62172102】 18 [∵函数f(x)=x3+ax2+bx+a2在x=1处有极值10,且f′(x)=3x2+2ax+b, ∴f(1)=10,且f′(1)=0, 即 解得或 而当时,函数在x=1处无极值,故舍去. ∴f(x)=x3+4x2-11x+16. ∴f(2)=18.] 8.函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2,则f(x)的单调递减区间是________. (-1,1) [∵f′(x)=3x2-3a,由f′(x)=0得x=±. 由f′(x)>0得x>或x<-; 由f′(x)<0得-查看更多