- 2021-05-13 发布 |
- 37.5 KB |
- 23页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018高考一轮复习立体几何空间向量
2017高考一轮复习 空间向量 一.解答题(共12小题) 1.(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3, (Ⅰ)求证:BF⊥平面ACFD; (Ⅱ)求二面角B﹣AD﹣F的余弦值. 2.(2016•天津)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2. (1)求证:EG∥平面ADF; (2)求二面角O﹣EF﹣C的正弦值; (3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值. 3.(2016•沈阳校级模拟)如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP. (Ⅰ)设点M为棱PD中点,求证:EM∥平面ABCD; (Ⅱ)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由. 4.(2016•天津一模)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上. (Ⅰ)求证:EF⊥平面PAC; (Ⅱ)若M为PD的中点,求证:ME∥平面PAB; (Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值. 5.(2016•贵阳一模)如图,在三棱锥P﹣ABC中,∠PAB=∠PAC=∠ACB=90°. (1)求证:平面PBC⊥平面PAC; (2)若PA=1,AB=2,BC=,在直线AC上是否存在一点D,使得直线BD与平面PBC所成角为30°?若存在,求出CD的长;若不存在,说明理由. 6.(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点. (Ⅰ)证明:A1D⊥平面A1BC; (Ⅱ)求直线A1B和平面BB1C1C所成的角的正弦值. 7.(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1. (1)求平面PAB与平面PCD所成二面角的余弦值; (2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长. 8.(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点. (Ⅰ)证明:BE⊥DC; (Ⅱ)求直线BE与平面PBD所成角的正弦值; (Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值. 9.(2014•新课标I)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. (Ⅰ)证明:AC=AB1; (Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值. 10.(2014•新课标II)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离. 11.(2013•北京)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5. (Ⅰ)求证:AA1⊥平面ABC; (Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值; (Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值. 12.(2013•新课标Ⅱ)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB. (Ⅰ)证明:BC1∥平面A1CD (Ⅱ)求二面角D﹣A1C﹣E的正弦值. 2017高考一轮复习 空间向量 参考答案与试题解析 一.解答题(共12小题) 1.(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3, (Ⅰ)求证:BF⊥平面ACFD; (Ⅱ)求二面角B﹣AD﹣F的余弦值. 【分析】(I)先证明BF⊥AC,再证明BF⊥CK,进而得到BF⊥平面ACFD. (II)方法一:先找二面角B﹣AD﹣F的平面角,再在Rt△BQF中计算,即可得出; 方法二:通过建立空间直角坐标系,分别计算平面ACK与平面ABK的法向量,进而可得二面角B﹣AD﹣F的平面角的余弦值. 【解答】(I)证明:延长AD,BE,CF相交于点K,如图所示,∵平面BCFE⊥平面ABC,∠ACB=90°, ∴AC⊥平面BCK,∴BF⊥AC. 又EF∥BC,BE=EF=FC=1,BC=2,∴△BCK为等边三角形,且F为CK的中点,则BF⊥CK, ∴BF⊥平面ACFD. (II)方法一:过点F作FQ⊥AK,连接BQ,∵BF⊥平面ACFD.∴BF⊥AK,则AK⊥平面BQF, ∴BQ⊥AK.∴∠BQF是二面角B﹣AD﹣F的平面角. 在Rt△ACK中,AC=3,CK=2,可得FQ=. 在Rt△BQF中,BF=,FQ=.可得:cos∠BQF=. ∴二面角B﹣AD﹣F的平面角的余弦值为. 方法二:如图,延长AD,BE,CF相交于点K,则△BCK为等边三角形, 取BC的中点,则KO⊥BC,又平面BCFE⊥平面ABC,∴KO⊥平面BAC, 以点O为原点,分别以OB,OK的方向为x,z的正方向,建立空间直角坐标系O﹣xyz. 可得:B(1,0,0),C(﹣1,0,0),K(0,0,),A(﹣1,﹣3,0),,. =(0,3,0),=,(2,3,0). 设平面ACK的法向量为=(x1,y1,z1),平面ABK的法向量为=(x2,y2,z2),由,可得, 取=. 由,可得,取=. ∴==. ∴二面角B﹣AD﹣F的余弦值为. 【点评】本题考查了空间位置关系、法向量的应用、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题. 2.(2016•天津)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2. (1)求证:EG∥平面ADF; (2)求二面角O﹣EF﹣C的正弦值; (3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值. 【分析】(1)取AD的中点I,连接FI,证明四边形EFIG是平行四边形,可得EG∥FI,利用线面平行的判定定理证明:EG∥平面ADF; (2)建立如图所示的坐标系O﹣xyz,求出平面OEF的法向量,平面OEF的法向量,利用向量的夹角公式,即可求二面角O﹣EF﹣C的正弦值; (3)求出=(﹣,,),利用向量的夹角公式求出直线BH和平面CEF所成角的正弦值. 【解答】(1)证明:取AD的中点I,连接FI, ∵矩形OBEF,∴EF∥OB,EF=OB, ∵G,I是中点, ∴GI∥BD,GI=BD. ∵O是正方形ABCD的中心, ∴OB=BD. ∴EF∥GI,EF=GI, ∴四边形EFIG是平行四边形, ∴EG∥FI, ∵EG⊄平面ADF,FI⊂平面ADF, ∴EG∥平面ADF; (2)解:建立如图所示的坐标系O﹣xyz,则B(0,﹣,0),C(,0,0),E(0,﹣,2), F(0,0,2), 设平面CEF的法向量为=(x,y,z),则,取=(,0,1) ∵OC⊥平面OEF, ∴平面OEF的法向量为=(1,0,0), ∵|cos<,>|= ∴二面角O﹣EF﹣C的正弦值为=; (3)解:AH=HF,∴==(,0,). 设H(a,b,c),则=(a+,b,c)=(,0,). ∴a=﹣,b=0,c=, ∴=(﹣,,), ∴直线BH和平面CEF所成角的正弦值=|cos<,>|==. 【点评】本题考查证明线面平行的判定定理,考查二面角O﹣EF﹣C的正弦值,直线BH和平面CEF所成角的正弦值,考查学生分析解决问题的能力,属于中档题. 3.(2016•沈阳校级模拟)如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP. (Ⅰ)设点M为棱PD中点,求证:EM∥平面ABCD; (Ⅱ)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由. 【分析】(I)证明BP⊥平面ABCD,以B为原点建立坐标系,则为平面ABCD的法向量,求出,的坐标,通过计算=0得出,从而有EM∥平面ABCD; (II)假设存在点N符合条件,设,求出和平面PCD的法向量的坐标,令|cos<>|=解出λ,根据λ的值得出结论. 【解答】证明:(Ⅰ)∵平面ABCD⊥平面ABEP,平面ABCD∩平面ABEP=AB,BP⊥AB, ∴BP⊥平面ABCD,又AB⊥BC, ∴直线BA,BP,BC两两垂直, 以B为原点,分别以BA,BP,BC为x轴,y轴,z轴建立如图所示的空间直角坐标系. 则P(0,2,0),B(0,0,0),D(2,0,1),E(2,1,0),C(0,0,1),∴M(1,1,), ∴=(﹣1,0,),=(0,2,0). ∵BP⊥平面ABCD,∴为平面ABCD的一个法向量, ∵=﹣1×0+0×2+=0, ∴⊥.又EM⊄平面ABCD, ∴EM∥平面ABCD. (Ⅱ)解:当点N与点D重合时,直线BN与平面PCD所成角的正弦值为. 理由如下: ∵=(2,﹣2,1),=(2,0,0), 设平面PCD的法向量为=(x,y,z),则. ∴.令y=1,得=(0,1,2). 假设线段PD上存在一点N,使得直线BN与平面PCD所成角α的正弦值等于. 设=λ=(2λ,﹣2λ,λ)(0≤λ≤1),∴==(2λ,2﹣2λ,λ). ∴cos<>===. ∴9λ2﹣8λ﹣1=0,解得λ=1或(舍去). ∴当N点与D点重合时,直线BN与平面PCD所成角的正弦值等于. 【点评】本题考查了线面平行的判断,空间向量的应用与线面角的计算,属于中档题. 4.(2016•天津一模)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上. (Ⅰ)求证:EF⊥平面PAC; (Ⅱ)若M为PD的中点,求证:ME∥平面PAB; (Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值. 【分析】(Ⅰ)证明AB⊥AC.EF⊥AC.推出PA⊥底面ABCD,即可说明PA⊥EF,然后证明EF⊥平面PAC. (Ⅱ)证明MF∥PA,然后证明MF∥平面PAB,EF∥平面PAB.即可阿门平面MEF∥平面PAB,从而证明ME∥平面PAB. (Ⅲ)以AB,AC,AP分别为x轴、y轴和z轴,如上图建立空间直角坐标系,求出相关点的坐标,平面ABCD的法向量,平面PBC的法向量,利用直线ME与平面PBC所成的角和此直线与平面ABCD所成的角相等,列出方程求解即可 【解答】(本小题满分14分) (Ⅰ)证明:在平行四边形ABCD中,因为AB=AC,∠BCD=135°,∠ABC=45°. 所以AB⊥AC. 由E,F分别为BC,AD的中点,得EF∥AB, 所以EF⊥AC.…(1分) 因为侧面PAB⊥底面ABCD,且∠BAP=90°, 所以PA⊥底面ABCD.…(2分) 又因为EF⊂底面ABCD, 所以PA⊥EF.…(3分) 又因为PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC, 所以EF⊥平面PAC.…(4分) (Ⅱ)证明:因为M为PD的中点,F分别为AD的中点, 所以MF∥PA, 又因为MF⊄平面PAB,PA⊂平面PAB, 所以MF∥平面PAB.…(5分) 同理,得EF∥平面PAB. 又因为MF∩EF=F,MF⊂平面MEF,EF⊂平面MEF, 所以平面MEF∥平面PAB.…(7分) 又因为ME⊂平面MEF, 所以ME∥平面PAB.…(9分) (Ⅲ)解:因为PA⊥底面ABCD,AB⊥AC,所以AP,AB,AC两两垂直,故以AB,AC,AP 分别为x轴、y轴和z轴,如上图建立空间直角坐标系, 则A(0,0,0),B(2,0,0),C(0,2,0),P(0,0,2),D(﹣2,2,0),E(1,1,0), 所以,,,…(10分) 设,则, 所以M(﹣2λ,2λ,2﹣2λ),, 易得平面ABCD的法向量=(0,0,1).…(11分) 设平面PBC的法向量为=(x,y,z), 由,,得 令x=1,得=(1,1,1).…(12分) 因为直线ME与平面PBC所成的角和此直线与平面ABCD所成的角相等, 所以,即,…(13分) 所以, 解得,或(舍).…(14分) 【点评】本题考查直线与平面所成角的求法,直线与平面平行的判定定理以及性质定理的应用,平面与平面平行的判定定理的应用,考查转化思想以及空间想象能力逻辑推理能力的应用. 5.(2016•贵阳一模)如图,在三棱锥P﹣ABC中,∠PAB=∠PAC=∠ACB=90°. (1)求证:平面PBC⊥平面PAC; (2)若PA=1,AB=2,BC=,在直线AC上是否存在一点D,使得直线BD与平面PBC所成角为30°?若存在,求出CD的长;若不存在,说明理由. 【分析】(1)推导出PA⊥平面ABC,从而BC⊥PA,又BC⊥CA,从而BC⊥平面PAC,由此能证明平面PBC⊥平面PAC. (2)以C为原点,CA为x轴,CB为y轴,过C垂直于平面ABC的直线为z轴,建立空间直角坐标系C﹣xyz,利用向量法能求出在直线AC上存在点,使得直线BD与平面PBC所成角为30°. 【解答】证明:(1)∵∠PAB=∠PAC=90°,∴PA⊥AB,PA⊥AC. ∵AB∩AC=A,∴PA⊥平面ABC.…(1分) ∵BC⊂平面ABC,∴BC⊥PA.…(3分) ∵∠ACB=90°,∴BC⊥CA.∵PA∩CA=A,∴BC⊥平面PAC.…(5分) ∵BC⊂平面PBC,∴平面PBC⊥平面PAC.…6分 解:(2)由已知及(1)所证可知,PA⊥平面ABC,BC⊥CA, ∵PA=1,AB=2,BC=. ∴以C为原点,CA为x轴,CB为y轴,过C垂直于平面ABC的直线为z轴,建立如图的空间直角坐标系C﹣xyz, 则C(0,0,0),B(0,,0),P(), , 设=(x,y,z)是平面PBC的法向量, 则,则取x=1,得=(1,0,﹣),…(9分) 设直线AC上的点D满足,则, ∴, ∵直线BD与平面PBC所成角为30°,∴, 解得,…(11分) ∴在直线AC上存在点,使得直线BD与平面PBC所成角为30°.…(12分) 【点评】本题考查面面垂直的证明,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用. 6.(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点. (Ⅰ)证明:A1D⊥平面A1BC; (Ⅱ)求直线A1B和平面BB1C1C所成的角的正弦值. 【分析】(I)连接AO,A1D,根据几何体的性质得出A1O⊥A1D,A1D⊥BC,利用直线平面的垂直定理判断. (II)利用空间向量的垂直得出平面BB1C1C的法向量=(,0,1),|根据与数量积求解余弦值,即可得出直线A1B和平面BB1C1C所成的角的正弦值. 【解答】证明:(I)∵AB=AC=2,D是B1C1的中点. ∴A1D⊥B1C1, ∵BC∥B1C1, ∴A1D⊥BC, ∵A1O⊥面ABC,A1D∥AO, ∴A1O⊥AO,A1O⊥BC ∵BC∩AO=O,A1O⊥A1D,A1D⊥BC ∴A1D⊥平面A1BC 解:(II) 建立坐标系如图 ∵在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4 ∴O(0,0,0),B(0,,0),B1(﹣,,),A1(0,0) 即=(0,,﹣),=(0,,0),=(,0,), 设平面BB1C1C的法向量为=(x,y,z), 即得出 得出=(,0,1),||=4,||= ∵=, ∴cos<,>==, 可得出直线A1B和平面BB1C1C所成的角的正弦值为 【点评】本题考查了空间几何体的性质,直线平面的垂直问题,空间向量的运用,空间想象能力,计算能力,属于中档题. 7.(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1. (1)求平面PAB与平面PCD所成二面角的余弦值; (2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长. 【分析】以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz. (1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可; (2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论. 【解答】解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图, 由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2). (1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量, ∵=(1,1,﹣2),=(0,2,﹣2), 设平面PCD的法向量为=(x,y,z), 由,得, 取y=1,得=(1,1,1), ∴cos<,>==, ∴平面PAB与平面PCD所成两面角的余弦值为; (2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1), 又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ), 又=(0,﹣2,2),从而cos<,>==, 设1+2λ=t,t∈[1,3], 则cos2<,>==≤, 当且仅当t=,即λ=时,|cos<,>|的最大值为, 因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值. 又∵BP==,∴BQ=BP=. 【点评】本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题. 8.(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点. (Ⅰ)证明:BE⊥DC; (Ⅱ)求直线BE与平面PBD所成角的正弦值; (Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值. 【分析】(I)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC的方向向量,根据•=0,可得BE⊥DC; (II)求出平面PBD的一个法向量,代入向量夹角公式,可得直线BE与平面PBD所成角的正弦值; (Ⅲ)根据BF⊥AC,求出向量的坐标,进而求出平面FAB和平面ABP的法向量,代入向量夹角公式,可得二面角F﹣AB﹣P的余弦值. 【解答】证明:(I)∵PA⊥底面ABCD,AD⊥AB, 以A为坐标原点,建立如图所示的空间直角坐标系, ∵AD=DC=AP=2,AB=1,点E为棱PC的中点. ∴B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1) ∴=(0,1,1),=(2,0,0) ∵•=0, ∴BE⊥DC; (Ⅱ)∵=(﹣1,2,0),=(1,0,﹣2), 设平面PBD的法向量=(x,y,z), 由,得, 令y=1,则=(2,1,1), 则直线BE与平面PBD所成角θ满足: sinθ===, 故直线BE与平面PBD所成角的正弦值为. (Ⅲ)∵=(1,2,0),=(﹣2,﹣2,2),=(2,2,0), 由F点在棱PC上,设=λ=(﹣2λ,﹣2λ,2λ)(0≤λ≤1), 故=+=(1﹣2λ,2﹣2λ,2λ)(0≤λ≤1), 由BF⊥AC,得•=2(1﹣2λ)+2(2﹣2λ)=0, 解得λ=, 即=(﹣,,), 设平面FBA的法向量为=(a,b,c), 由,得 令c=1,则=(0,﹣3,1), 取平面ABP的法向量=(0,1,0), 则二面角F﹣AB﹣P的平面角α满足: cosα===, 故二面角F﹣AB﹣P的余弦值为: 【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键. 9.(2014•新课标I)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. (Ⅰ)证明:AC=AB1; (Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值. 【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1; (2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值. 【解答】解:(1)连结BC1,交B1C于点O,连结AO, ∵侧面BB1C1C为菱形, ∴BC1⊥B1C,且O为BC1和B1C的中点, 又∵AB⊥B1C,∴B1C⊥平面ABO, ∵AO⊂平面ABO,∴B1C⊥AO, 又B10=CO,∴AC=AB1, (2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO, 又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB, ∴OA,OB,OB1两两垂直, 以O为坐标原点,的方向为x轴的正方向,||为单位长度, 的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系, ∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC, ∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0) ∴=(0,,),==(1,0,),==(﹣1,,0), 设向量=(x,y,z)是平面AA1B1的法向量, 则,可取=(1,,), 同理可得平面A1B1C1的一个法向量=(1,﹣,), ∴cos<,>==, ∴二面角A﹣A1B1﹣C1的余弦值为 【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题. 10.(2014•新课标II)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离. 【分析】(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC; (Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可. 【解答】解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO, ∵ABCD是矩形, ∴O为BD的中点 ∵E为PD的中点, ∴EO∥PB. EO⊂平面AEC,PB⊄平面AEC ∴PB∥平面AEC; (Ⅱ)∵AP=1,AD=,三棱锥P﹣ABD的体积V=, ∴V==, ∴AB=,PB==. 作AH⊥PB交PB于H, 由题意可知BC⊥平面PAB, ∴BC⊥AH, 故AH⊥平面PBC. 又在三角形PAB中,由射影定理可得: A到平面PBC的距离. 【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力. 11.(2013•北京)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5. (Ⅰ)求证:AA1⊥平面ABC; (Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值; (Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值. 【分析】(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明; (II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角; (III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,利用向量垂直于数量积得关系即可得出. 【解答】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC. 又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC, ∴AA1⊥平面ABC. (II)解:由AC=4,BC=5,AB=3. ∴AC2+AB2=BC2,∴AB⊥AC. 建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4), ∴,,. 设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2). 则,令y1=4,解得x1=0,z1=3,∴. ,令x2=3,解得y2=4,z2=0,∴. ===. ∴二面角A1﹣BC1﹣B1的余弦值为. (III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D, ∴=,=(0,3,﹣4), ∵,∴, ∴,解得t=. ∴. 【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力. 12.(2013•新课标Ⅱ)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB. (Ⅰ)证明:BC1∥平面A1CD (Ⅱ)求二面角D﹣A1C﹣E的正弦值. 【分析】(Ⅰ)通过证明BC1平行平面A1CD内的直线DF,利用直线与平面平行的判定定理证明BC1∥平面A1CD (Ⅱ)证明DE⊥平面A1DC,作出二面角D﹣A1C﹣E的平面角,然后求解二面角平面角的正弦值即可. 【解答】解:(Ⅰ)证明:连结AC1交A1C于点F,则F为AC1的中点, 又D是AB中点,连结DF,则BC1∥DF, 因为DF⊂平面A1CD,BC1⊄平面A1CD, 所以BC1∥平面A1CD. (Ⅱ)因为直棱柱ABC﹣A1B1C1,所以AA1⊥CD, 由已知AC=CB,D为AB的中点,所以CD⊥AB, 又AA1∩AB=A,于是,CD⊥平面ABB1A1, 设AB=2,则AA1=AC=CB=2,得∠ACB=90°, CD=,A1D=,DE=,A1E=3 故A1D2+DE2=A1E2,即DE⊥A1D,所以DE⊥平面A1DC, 又A1C=2,过D作DF⊥A1C于F,∠DFE为二面角D﹣A1C﹣E的平面角, 在△A1DC中,DF==,EF==, 所以二面角D﹣A1C﹣E的正弦值.sin∠DFE=. 【点评】本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,考查空间想象能力与计算能力. 查看更多