- 2021-05-13 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
海南高考真题 数学2016
2016年普通高等学校招生全国统一考试(全国卷二) 理科数学 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知在复平面内对应的点在第四象限,则实数m的取值范围是 (A) (B) (C) (D) (2)已知集合,,则 (A) (B) (C) (D) (3)已知向量,且,则m= (A) (B) (C)6 (D)8 (4)圆的圆心到直线 的距离为1,则a= (A) (B) (C) (D)2 (5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A)24 (B)18 (C)12 (D)9 (6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A)20π (B)24π (C)28π (D)32π 13 (7)若将函数y=2sin 2x的图像向左平移个单位长度,则平移后图象的对称轴为 (A) (B) (C) (D) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的a为2,2,5,则输出的 (A)7 (B)12 (C)17 (D)34 (9)若,则= (A) (B) (C) (D) (10)从区间随机抽取2n个数,,…,,,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率 的近似值为 (A) (B) (C) (D) (11)已知,是双曲线E:的左,右焦点,点M在E上,与轴垂直,sin ,则E的离心率为 (A) (B) (C) (D)2 (12)已知函数满足,若函数与图像的交点 为,,⋯,,则( ) (A)0 (B)m (C)2m (D)4m 第Ⅱ卷 本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 13 二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). (13)的内角A,B,C的对边分别为a,b,c,若,,, 则 . (14),是两个平面,m,n是两条线,有下列四个命题: (15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 (16)若直线是曲线的切线,也是曲线的切线, . 三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分) 为等差数列的前n项和,且记,其中表示不超过x的最大整数,如. (I)求; (II)求数列的前1 000项和. 18.(本题满分12分) 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下: 上年度出险次数 0 1 2 3 4 5 保费 0.85a a 1.25a 1.5a 1.75a 2a 设该险种一续保人一年内出险次数与相应概率如下: 一年内出险次数 0 1 2 3 4 5 概率 0.30 0.15 0.20 0.20 0.10 0. 05 (I)求一续保人本年度的保费高于基本保费的概率; (II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; 13 (III)求续保人本年度的平均保费与基本保费的比值. 19.(本小题满分12分) 如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△的位置,. (I)证明:平面ABCD; (II)求二面角的正弦值. 20. (本小题满分12分) 已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA. (I)当t=4,时,求△AMN的面积; (II)当时,求k的取值范围. (21)(本小题满分12分) (I)讨论函数 的单调性,并证明当 >0时, (II)证明:当 时,函数 有最小值.设g(x)的最小值为,求函数 的值域. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分, 13 做答时请写清题号 (22)(本小题满分10分)选修4-1:集合证明选讲 如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F. (I) 证明:B,C,E,F四点共圆; (II)若AB=1,E为DA的中点,求四边形BCGF的面积. (23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy中,圆C的方程为(x+6)2+y2=25. (I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程; (II)直线l的参数方程是(t为参数),l与C交于A、B两点,∣AB∣=,求l的斜率。 (24)(本小题满分10分),选修4—5:不等式选讲 已知函数f(x)= ∣x-∣+∣x+∣,M为不等式f(x) <2的解集. (I)求M; (II)证明:当a,b∈M时,∣a+b∣<∣1+ab∣。 13 2016年普通高等学校招生全国统一考试 理科数学答案 1.【解析】A ∴,,∴,故选A. 2.【解析】C , ∴,∴,故选C. 3.【解析】D , ∵,∴ 解得, 故选D. 4.【解析】A 圆化为标准方程为:, 故圆心为,,解得, 故选A. 5.【解析】B 有种走法,有种走法,由乘法原理知,共种走法 故选B. 6.【解析】C 几何体是圆锥与圆柱的组合体, 设圆柱底面圆半径为,周长为,圆锥母线长为,圆柱高为. 由图得,,由勾股定理得:, ,故选C. 7.【解析】B 平移后图像表达式为, 令,得对称轴方程:,故选B. 8.【解析】C 第一次运算:, 第二次运算:, 第三次运算:, 故选C. 13 9.【解析】D∵,,故选D. 10.【解析】C 由题意得:在如图所示方格中, 而平方和小于1的点均在如图所示的阴影中 由几何概型概率计算公式知,∴,故选C. 11.【解析】A 离心率,由正弦定理得.故选A. 12.【解析】B 由得关于对称,而也关于对称, ∴对于每一组对称点 ,∴,故选B. 13.【解析】 ∵,,,,, 由正弦定理得:解得. 14.【解析】②③④ 15.【解析】 由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足, 若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲(1,3), 16.【解析】 的切线为:(设切点横坐标为)的切线为:∴解得 ∴. 13 三.解答题 17.(本题满分12分) 【答案】(Ⅰ),, ;(Ⅱ)1893. 试题解析:(Ⅰ)设的公差为,据已知有,解得 所以的通项公式为 (Ⅱ)因为 所以数列的前项和为 18.(本题满分12分) 试题解析:(Ⅰ)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故 (Ⅱ)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故 又,故 因此所求概率为 (Ⅲ)记续保人本年度的保费为,则的分布列为 因此续保人本年度的平均保费与基本保费的比值为 13 19.(本小题满分12分) 试题解析:(I)由已知得,,又由得,故. 因此,从而.由,得. 由得.所以,. 于是,, 故. 又,而, 所以. (II)如图,以为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,,,,,,,.设是平面的法向量,则,即,所以可以取.设是平面的法向量,则,即,所以可以取 13 .于是, .因此二面角的正弦值是. 20.(本小题满分12分) 试题解析:(I)设,则由题意知,当时,的方程为,. 由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为. 将代入得.解得或,所以. 因此的面积. (II)由题意,,. 将直线的方程代入得. 由得,故. 由题设,直线的方程为,故同理可得, 由得,即. 当时上式不成立, 因此.等价于, 即.由此得,或,解得. 13 因此的取值范围是. 21.本小题满分12分) 试题解析:(Ⅰ)的定义域为. 且仅当时,,所以在单调递增, 因此当时, 所以 (II) 由(I)知,单调递增,对任意 因此,存在唯一使得即, 当时,单调递减; 当时,单调递增. 因此在处取得最小值,最小值为 于是,由单调递增 所以,由得 因为单调递增,对任意存在唯一的 使得所以的值域是 13 综上,当时,有,的值域是 22. 试题解析:(I)因为,所以 则有 所以由此可得 由此所以四点共圆. (II)由四点共圆,知,连结, 由为斜边的中点,知,故 因此四边形的面积是面积的2倍,即 23. 试题解析:(I)由可得的极坐标方程 (II)在(I)中建立的极坐标系中,直线的极坐标方程为 由所对应的极径分别为将的极坐标方程代入的极坐标方程得 于是 13 由得, 所以的斜率为或. 24. 试题解析:(I) 当时,由得解得; 当时, ; 当时,由得解得. 所以的解集. (II)由(I)知,当时,,从而 , 因此 13查看更多