- 2021-05-13 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考文科数学试题—江西
2006高等学校全国统一数学文试题(江西卷) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则等于( ) A. B. C. D. 2.函数的最小正周期为( ) A. B. C. D. 3.在各项均不为零的等差数列中,若,则( ) A. B. C. D. 4.下列四个条件中,是的必要不充分条件的是( ) A., B., C.为双曲线, D., 5.对于上可导的任意函数,若满足,则必有( ) A. B. C. D. 6.若不等式对一切成立,则的最小值为( ) A. B. C. D. 7.在的二项展开式中,若常数项为,则等于( ) A. B. C. D. 8.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为( ) A. B. C. D. 9.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是( ) A.等腰四棱锥的腰与底面所成的角都相等 B.等腰四棱锥的侧面与底面所成的二面角都相等或互补 C.等腰四棱锥的底面四边形必存在外接圆 D.等腰四棱锥的各顶点必在同一球面上 10.已知等差数列的前项和为,若,且三点共线(该直线不过点),则等于( ) A.100 B.101 C.200 D.201 11.为双曲线的右支上一点,,分别是圆和上的点,则的最大值为( ) A. B. C. D. 4 4 8 12 16 20 24 图(1) 4 4 8 16 20 B 24 12 16 4 4 8 12 24 A 16 20 16 12.某地一天内的气温(单位:℃)与时刻(单位:时)之间的关系如图(1)所示,令表示时间段内的温差(即时间段内最高温度与最低温度的差).与之间的函数关系用下列图象表示,则正确的图象大致是( ) 4 4 8 16 20 C 24 12 16 4 4 8 12 24 D 16 20 16 第II卷 二、填空题:本大题4小题,每小题4分,共16分.请把答案填在答题卡上. 13.已知向量,,则的最大值为 . 14.设的反函数为,若,则 . 15.如图,已知正三棱柱的底面边长为1,高为8,一质点自点出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为 . 16.已知为双曲线的两个焦点,为双曲线右支上异于顶点的任意一点,为坐标原点.下面四个命题( ) A.的内切圆的圆心必在直线上; B.的内切圆的圆心必在直线上; C.的内切圆的圆心必在直线上; D.的内切圆必通过点. 其中真命题的代号是 (写出所有真命题的代号). 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数在与时都取得极值. (1)求的值及函数的单调区间; (2)若对,不等式恒成立,求的取值范围. 18.(本小题满分12分) 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求 (1)甲、乙两人都没有中奖的概率; (2)甲、两人中至少有一人获二等奖的概率. 19.(本小题满分12分) 在锐角中,角所对的边分别为,已知, (1)求的值; A O E C B (2)若,,求的值. 20.(本小题满分12分) 如图,已知三棱锥的侧棱两两垂直,且,,是的中点. (1)求点到面的距离; (2)求异面直线与所成的角; (3)求二面角的大小. 21.(本小题满分12分) O P A F B D x y 如图,椭圆的右焦点为,过点的一动直线绕点转动,并且交椭圆于两点,为线段的中点. (1)求点的轨迹的方程; (2)若在的方程中,令, . 设轨迹的最高点和最低点分别为和.当为何值时,为一个正三角形? 22.(本小题满分14分) 已知各项均为正数的数列,满足:,且,. (1)求数列的通项公式; (2)设,,求,并确定最小正整数,使为整数. 2006年普通高等学校招生全国统一考试(江西卷) 文科数学(编辑:ahuazi) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至4页。全卷满分150分,考试时间120分钟。 考生注意事项: 1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。 2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。 3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。在试题卷上作答无效。 4.考试结束,监考人员将试题卷和答题卡一并收回。 参考公式: 如果时间A、B互斥,那么 如果时间A、B相互独立,那么 如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率 球的表面积公式,其中R表示球的半径 球的体积公式,其中R表示球的半径 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则等于(C ) A. B. C. D. 解:P={x|x³1或x£0},Q={x|x>1}故选C 2.函数的最小正周期为(B ) A. B. C. D. 解:T=,故选B 3.在各项均不为零的等差数列中,若,则( A ) A. B. C. D. 解:设公差为d,则an+1=an+d,an-1=an-d,由可得2an-=0,解得an=2(零解舍去),故2×(2n-1)-4n=-2,故选A 4.下列四个条件中,是的必要不充分条件的是( D ) A., B., C.为双曲线, D., 解:A. p不是q的充分条件,也不是必要条件;B. p是q的充要条件;C. p是q的充分条件,不是必要条件;D.正确 5.对于上可导的任意函数,若满足,则必有(C ) A. B. C. D. 解:依题意,当x³1时,f¢(x)³0,函数f(x)在(1,+¥)上是增函数;当x<1时,f¢(x)£0,f(x)在(-¥ ,1)上是减函数,故f(x)当x=1时取得最小值,即有 f(0)³f(1),f(2)³f(1),故选C 6.若不等式对一切成立,则的最小值为( C ) A. B. C. D. 解:设f(x)=x2+ax+1,则对称轴为x= 若³,即a£-1时,则f(x)在〔0,〕上是减函数,应有f()³0Þ -£x£-1 若£0,即a³0时,则f(x)在〔0,〕上是增函数,应有f(0)=1>0恒成立,故a³0 若0££,即-1£a£0,则应有f()=恒成立,故-1£a£0 综上,有-£a故选C 7.在的二项展开式中,若常数项为,则等于( B ) A. B. C. D. 解:,由解得n=6故选B 8.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为(A ) A. B. C. D. 解:依题意,各层次数量之比为4:3:2:1,即红球抽4个,蓝球抽3个,白球抽2个,黄球抽一个,故选A 9.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是( B ) A.等腰四棱锥的腰与底面所成的角都相等 B.等腰四棱锥的侧面与底面所成的二面角都相等或互补 C.等腰四棱锥的底面四边形必存在外接圆 D.等腰四棱锥的各顶点必在同一球面上 解:因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C正确,且在它的高上必能找到一点到各个顶点的距离相等,故D正确,B不正确,如底面是一个等腰梯形时结论就不成立。故选B 10.已知等差数列的前项和为,若,且三点共线(该直线不过点),则等于(A ) A.100 B.101 C.200 D.201 解:依题意,a1+a200=1,故选A 11.为双曲线的右支上一点,,分别是圆和上的点,则的最大值为( D ) A. B. C. D. 解:设双曲线的两个焦点分别是F1(-5,0)与F2(5,0),则这两点正好是两圆的圆心,当且仅当点P与M、F1三点共线以及P与N、F2三点共线时所求的值最大,此时 |PM|-|PN|=(|PF1|-2)-(|PF2|-1)=10-1=9故选B 4 4 8 12 16 20 24 图(1) 4 4 8 16 20 B 24 12 16 4 4 8 12 24 A 16 20 16 12.某地一天内的气温(单位:℃)与时刻(单位:时)之间的关系如图(1)所示,令表示时间段内的温差(即时间段内最高温度与最低温度的差).与之间的函数关系用下列图象表示,则正确的图象大致是(D ) 4 4 8 16 20 C 24 12 16 4 4 8 12 24 D 16 20 16 解:结合图象及函数的意义可得。 第II卷 二、填空题:本大题4小题,每小题4分,共16分.请把答案填在答题卡上. 13.已知向量,,则的最大值为 解:=|sinq-cosq|=|sin(q-)|£| 14.设的反函数为,若,则 2 . 解:f-1(x)=3x-6故〔f-1(m)+6〕·〔f-1(x)+6〕=3m·3n=3m +n=27 m+n=3f(m+n)=log3(3+6)=2 15.如图,已知正三棱柱的底面边长为1,高为8,一质点自点出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为 10 . 解:将正三棱柱沿侧棱CC1展开, 其侧面展开图如图所示,由图中路线可得结论。 16.已知为双曲线的两个焦点,为双曲线右支上异于顶点的任意一点,为坐标原点.下面四个命题( ) A.的内切圆的圆心必在直线上; B.的内切圆的圆心必在直线上; C.的内切圆的圆心必在直线上; D.的内切圆必通过点. 其中真命题的代号是 (A)、(D) (写出所有真命题的代号). 解:设的内切圆分别与PF1、PF2切于点A、B,与F1F2切于点M,则|PA|=|PB|,|F1A|=|F1M|,|F2B|=|F2M|,又点P在双曲线右支上,所以|PF1|-|PF2|=2a,故|F1M|-|F2M|=2a,而|F1M|+|F2M|=2c,设M点坐标为(x,0),则由|F1M|-|F2M|=2a可得(x+c)-(c-x)=2a解得x=a,显然内切圆的圆心与点M的连线垂直于x轴,故A、D正确。 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数在与时都取得极值. (1)求的值及函数的单调区间; (2)若对,不等式恒成立,求的取值范围. 解:(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b 由f¢()=,f¢(1)=3+2a+b=0得 a=,b=-2 f¢(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表: x (-¥,-) - (-,1) 1 (1,+¥) f¢(x) + 0 - 0 + f(x) 极大值 ¯ 极小值 所以函数f(x)的递增区间是(-¥,-)与(1,+¥) 递减区间是(-,1) (2)f(x)=x3-x2-2x+c,xÎ〔-1,2〕,当x=-时,f(x)=+c 为极大值,而f(2)=2+c,则f(2)=2+c为最大值。 要使f(x)查看更多