- 2021-05-13 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2014高考数学第一轮复习学案三角恒等变形及应用
普通高考数学科一轮复习精品学案 第24讲 三角恒等变形及应用 一.课标要求 1.经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用; 2.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系; 3.能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆)。 二.命题走向 从近几年的高考考察的方向来看,这部分的高考题以选择、解答题出现的机会较多,有时候也以填空题的形式出现,它们经常与三角函数的性质、解三角形及向量联合考察,主要题型有三角函数求值,通过三角式的变换研究三角函数的性质。 本讲内容是高考复习的重点之一,三角函数的化简、求值及三角恒等式的证明是三角变换的基本问题。历年高考中,在考察三角公式的掌握和运用的同时,还注重考察思维的灵活性和发散性,以及观察能力、运算及观察能力、运算推理能力和综合分析能力。 三.要点精讲 1.两角和与差的三角函数 ; ; 。 2.二倍角公式 ; ; 。 3.三角函数式的化简 常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。 (1)降幂公式 ;;。 (2)辅助角公式 , 。 - 13 - 4.三角函数的求值类型有三类 (1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题; (2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论; (3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。 5.三角等式的证明 (1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”; (2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。 四.典例解析 题型1:两角和与差的三角函数 例1.已知,求cos。 分析:因为既可看成是看作是的倍角,因而可得到下面的两种解法。 解法一:由已知sin+sin=1…………①, cos+cos=0…………②, ①2+②2得 2+2cos; ∴ cos。 ①2-②2得 cos2+cos2+2cos()=-1, 即2cos()〔〕=-1。 ∴。 解法二:由①得…………③ 由②得…………④ ④÷③得 点评:此题是给出单角的三角函数方程,求复角的余弦值,易犯错误是利用方程组解 - 13 - sin、cos 、 sin 、 cos,但未知数有四个,显然前景并不乐观,其错误的原因在于没有注意到所求式与已知式的关系本题关键在于化和为积促转化,“整体对应”巧应用。 例2.已知求。 分析:由韦达定理可得到进而可以求出的值,再将所求值的三角函数式用tan表示便可知其值。 解法一:由韦达定理得tan, 所以tan 解法二:由韦达定理得tan, 所以tan , 。 点评:(1)本例解法二比解法一要简捷,好的解法来源于熟练地掌握知识的系统结构,从而寻找解答本题的知识“最近发展区”。(2)运用两角和与差角三角函数公式的关键是熟记公式,我们不仅要记住公式,更重要的是抓住公式的特征,如角的关系,次数关系,三角函数名等抓住公式的结构特征对提高记忆公式的效率起到至关重要的作用,而且抓住了公式的结构特征,有利于在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点。(3)对公式的逆用公式,变形式也要熟悉,如 题型2:二倍角公式 - 13 - 例3.化简下列各式: (1), (2)。 分析:(1)若注意到化简式是开平方根和2以及其范围不难找到解题的突破口;(2)由于分子是一个平方差,分母中的角,若注意到这两大特征,,不难得到解题的切入点。 解析:(1)因为, 又因, 所以,原式=。 (2)原式= =。 点评:(1)在二倍角公式中,两个角的倍数关系,不仅限于2是的二倍,要熟悉多种形式的两个角的倍数关系,同时还要注意三个角的内在联系的作用,是常用的三角变换。(2)化简题一定要找准解题的突破口或切入点,其中的降次,消元,切割化弦,异名化同名,异角化同角是常用的化简技巧。(3)公式变形,。 例4.若。 分析:注意的两变换,就有以下的两种解法。 - 13 - 解法一:由, 解法二:, 点评:此题若将的左边展开成再求cosx,sinx的值,就很繁琐,把,并注意角的变换2·运用二倍角公式,问题就公难为易,化繁为简所以在解答有条件限制的求值问题时,要善于发现所求的三角函数的角与已知条件的角的联系,一般方法是拼角与拆角, 如, , 等。 题型3:辅助角公式 - 13 - 例5.已知正实数a,b满足。 分析:从方程 的观点考虑,如果给等式左边的分子、分母同时除以a,则已知等式可化为关于程,从而可求出由,若注意到等式左边的分子、分母都具有的结构,可考虑引入辅助角求解。 解法一:由题设得 解法二: 解法三: 点评:以上解法中,方法一用了集中变量的思想,是一种基本解法;解法二通过模式联想,引入辅助角,技巧性较强,但辅助角公式, - 13 - ,或 在历年高考中使用频率是相当高的,应加以关注;解法三利用了换元法,但实质上是综合了解法一和解法二的解法优点,所以解法三最佳。 例6.已知函数y=cos2x+sinxcosx+1,x∈R. (1)当函数y取得最大值时,求自变量x的集合; (2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到? (理)(1)解析:y=cos2x+sinxcosx+1 =(2cos2x-1)++(2sinxcosx)+1 =cos2x+sin2x+ =(cos2x·sin+sin2x·cos)+ =sin(2x+)+ y取得最大值必须且只需2x+=+2kπ,k∈Z, 即x=+kπ,k∈Z。 所以当函数y取得最大值时,自变量x的集合为{x|x=+kπ,k∈Z}。 (2)将函数y=sinx依次进行如下变换: ①把函数y=sinx的图象向左平移,得到函数y=sin(x+)的图象; ②把得到的图象上各点横坐标缩短到原来的倍(纵坐标不变),得到函数 - 13 - y=sin(2x+)的图象; ③把得到的图象上各点纵坐标缩短到原来的倍(横坐标不变),得到函数 y=sin(2x+)的图象; ④把得到的图象向上平移个单位长度,得到函数y=sin(2x+)+的图象; 综上得到函数y=cos2x+sinxcosx+1的图象。 点评:本题主要考查三角函数的图象和性质,考查利用三角公式进行恒等变形的技能以及运算能力。 题型4:三角函数式化简 例7.求sin220°+cos250°+sin20°cos50°的值。 解析:原式=(1-cos40°)+(1+cos100°)+(sin70°-sin30°) =1+(cos100°-cos40°)+sin70°- =-sin70°sin30°+sin70° =-sin70°+sin70°=。 点评:本题考查三角恒等式和运算能力。 例8.已知函数. (Ⅰ)求的定义域; (Ⅱ)设的第四象限的角,且,求的值。 解析:(Ⅰ)由 得, 故在定义域为 - 13 - (Ⅱ)因为,且是第四象限的角, 所以 a 故 。 题型5:三角函数求值 例9.设函数f(x)=cos2cos+sinrcosx+a(其中>0,aR),且f(x)的图象在y轴右侧的第一个高点的横坐标为。 (Ⅰ)求ω的值; (Ⅱ)如果f(x)在区间上的最小值为,求a的值。 解析:(I) 依题意得 . (II)由(I)知,。 又当时,,故,从而在区间上的最小值为,故 例10.求函数=2+的值域和最小正周期。 - 13 - 解析:y=cos(x+) cos(x-)+sin2x=cos2x+sin2x=2sin(2x+), ∴函数y=cos(x+) cos(x-)+sin2x的值域是[-2,2],最小正周期是π。 题型6:三角函数综合问题 例11.已知向量 (I)若求 (II)求的最大值。 解析:(1); 当=1时有最大值,此时,最大值为。 点评:本题主要考察以下知识点:1、向量垂直转化为数量积为0;2,特殊角的三角函数值;3、三角函数的基本关系以及三角函数的有界性;4.已知向量的坐标表示求模,难度中等,计算量不大。 例12.设0<θ<,曲线x2sinθ+y2cosθ=1和x2cosθ-y2sinθ=1有4个不同的交点。 (1)求θ的取值范围; (2)证明这4个交点共圆,并求圆半径的取值范围。 解析:(1)解方程组,得; 故两条已知曲线有四个不同的交点的充要条件为,(0<θ<)0<θ<。 (2)设四个交点的坐标为(xi,yi)(i=1,2,3,4),则:xi2+yi2=2cosθ∈(,2)(i=1,2,3,4)。 故四个交点共圆,并且这个圆的半径r=cosθ∈(). - 13 - 点评:本题注重考查应用解方程组法处理曲线交点问题,这也是曲线与方程的基本方法,同时本题也突出了对三角不等关系的考查。 题型7:三角函数的应用 例13.有一块扇形铁板,半径为R,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都在扇形的半径或弧上,求这个内接矩形的最大面积. 分析:本题入手要解决好两个问题, (1)内接矩形的放置有两种情况,如图2-19所示,应该分别予以处理; (2)求最大值问题这里应构造函数,怎么选择便于以此表达矩形面积的自变量。 解析:如图2-19(1)设∠FOA=θ,则FG=Rsinθ, , 。 又设矩形EFGH的面积为S,那么 又∵0°<θ<60°,故当cos(2θ-60°)=1,即θ=30′时, - 13 - 如图2-19 (2),设∠FOA=θ,则EF=2Rsin(30°-θ),在△OFG中,∠OGF=150° 设矩形的面积为S. 那么S=EFFG=4R2sinθsin(30°-θ) =2R2[cos(2θ-30°)-cos30°] 又∵0<θ<30°,故当cos(2θ-30°)=1 。 五.思维总结 从近年高考的考查方向来看,这部分常常以选择题和填空题的形式出现,有时也以大题的形式出现,分值约占5%因此能否掌握好本重点内容,在一定的程度上制约着在高考中成功与否。 1.两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在学习时应注意以下几点: (1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉; (2)善于拆角、拼角 如,等; (3)注意倍角的相对性 (4)要时时注意角的范围 - 13 - (5)化简要求 熟悉常用的方法与技巧,如切化弦,异名化同名,异角化同角等。 2.证明三角等式的思路和方法。 (1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。 (2)证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。 3.解答三角高考题的策略。 (1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。 (2)寻找联系:运用相关公式,找出差异之间的内在联系。 (3)合理转化:选择恰当的公式,促使差异的转化。 4.加强三角函数应用意识的训练 由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成思维障碍,思路受阻.实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点.总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法。 5.变为主线、抓好训练 变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化变意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律。 针对高考中题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法.另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点.同时应掌握三角函数与二次函数相结合的题目。 - 13 -查看更多