- 2021-05-13 发布 |
- 37.5 KB |
- 17页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学文二轮复习考前三个月配套教学案专题二导数及其应用
第五讲 导数及其应用 1.导数的几何意义 (1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0). (2)曲线y=f(x)在点(x0,f(x0))处的切线方程为 y-f(x0)=f′(x0)(x-x0). (3)导数的物理意义:s′(t)=v(t),v′(t)=a(t). 2.函数的单调性与导数 如果已知函数在某个区间上单调递增(减),则这个函数的导数在这个区间上大(小)于零恒成立.在区间上离散点处导数等于零,不影响函数的单调性,如函数y=x+sinx. 3.函数的导数与极值 对可导函数而言,某点导数等于零是函数在该点取得极值的必要条件,但对不可导的函数,可能在极值点处函数的导数不存在(如函数y=|x|在x=0处),因此对于一般函数而言,导数等于零既不是函数取得极值的充分条件也不是必要条件. 4.闭区间上函数的最值 在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小值. 1.(2013·广东)若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k=________. 答案 -1 解析∵y′=k+,∴y′|x=1=k+1=0,∴k=-1. 2.(2013·福建)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的 是( ) A.∀x∈R,f(x)≤f(x0) B.-x0是f(-x)的极小值点 C.-x0是-f(x)的极小值点 D.-x0是-f(-x)的极小值点 答案D 解析A错,因为极大值未必是最大值.B错,因为函数y=f(x)与函数y=f(-x) 的图象关于y轴对称,-x0应是f(-x)的极大值点.C错,函数y=f(x)与函数y=-f(x)的图象关于x轴对称,x0应为-f(x)的极小值点.D对,函数y=f(x)与y=-f(-x)的图象关于原点对称,-x0应为y=-f(-x)的极小值点. 3.(2013·浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数 y=f′(x)的图象如图所示,则该函数的图象是( ) 答案B 解析从导函数的图象可以看出,导函数值先增大后减小,x=0时最大,所以函数f(x)的图象的变化率也先增大后减小,在x=0时变化率最大.A项,在x=0时变化率最小,故错误;C项,变化率是越来越大的,故错误;D项,变化率是越来越小的,故错误.B项正确. 4.(2012·重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( ) A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) 答案D 解析利用极值的存在条件判定. 当x<-2时,y=(1-x)f′(x)>0,得f′(x)>0; 当-2查看更多