高考数学考点归纳之函数模型及其应用

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学考点归纳之函数模型及其应用

高考数学考点归纳之函数模型及其应用一、基础知识1.常见的8种函数模型(1)正比例函数模型:f(x)=kx(k为常数,k≠0);(2)反比例函数模型:f(x)=(k为常数,k≠0);(3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(4)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(5)指数函数模型:f(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1);(6)对数函数模型:f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,a≠1);(7)幂函数模型:f(x)=axn+b(a,b,n为常数,a≠0,n≠1);(8)“对勾”函数模型:y=x+(a>0).(1)形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型,“对勾”函数的性质:①该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0,]上单调递减.②当x>0时,x=时取最小值2,当x<0时,x=-时取最大值-2.(2)函数f(x)=+(a>0,b>0,x>0)在区间(0,]内单调递减,在区间[,+∞)内单调递增.2.三种函数模型的性质函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳 图象的变化随x的增大,逐渐表现为与y轴平行随x的增大,逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有logax0)可以描述增长幅度不同的变化,当n,值较小(n≤1)时,增长较慢;当n值较大(n>1)时,增长较快.[典例] 国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?[解] (1)设每团人数为x,由题意得0
查看更多