中考备考复习教案反比例函数的一些常考相关结论(图片版)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考备考复习教案反比例函数的一些常考相关结论(图片版)

反比例函数的一些常考相关结论 反比例函数是中考的重要内容之一,关于反比例函数的一些相关结论大概可以分为以下四类:‎ ‎1.反比例中的面积关系;‎ ‎2.反比例中的平行关系;‎ ‎3.反比例中的线段关系;‎ ‎4.反比例中的角的关系。‎ 一.有关面积关系:‎ ‎1.反比例函数图像上任取一点A,然后过A点分别向x轴,y轴作垂线,垂足分别为为B、C,则矩形ABOC的面积始终等于k的绝对值。‎ ‎2.反比例函数图像上任取一点A,然后过A点向x轴作垂线,垂足为为B,则三角形ABO的面积始终等于k的绝对值的一半。‎ ‎3.反比例函数图像上任取两点A,D,如图,然后分别过A,D两点分别向x轴y轴作垂线,垂足分别为B、C和E、F,设AB与DF交于点M,则在A、D运动过程中,矩形AMFC和矩形BMDE的面积始终相等。‎ ‎4.反比例函数图像上任取两点A,C,如图,然后分别过A,C两点向x轴作垂线,垂足分别为B、D,设AO与CD交于点M,则在A、C运动过程中,三角形OCM和梯形ABDM的面积始终相等。‎ ‎4.反比例函数图像上任取两点A,C,如图,然后分别过A,C两点向x轴作垂线,垂足分别为B、D,则在A、C运动过程中,三角形OCA和梯形ABDC的面积始终相等。‎ ‎5.矩形ABOC的边OC、OB分别在x轴y轴上,如图,AB边与反比例函数图像交于点D,AC边与反比例函数图像交于点E,连接OA、OD、OE,则三角形OAD和三角形OAE的面积相等。‎ 二.有关平行关系:‎ ‎1.矩形ABCO的边OC、OA分别在x轴y轴上,如图,AB边与反比例函数图像交于点D,BC边与反比例函数图像交于点E,连接AC、DE,则DE∥AC。‎ ‎2.反比例函数图象上任取两点A、B向坐标轴作垂线,然后连接垂足C、D或者E、F,则AB∥CD,AB∥EF.‎ 三.有关线段关系:‎ ‎1.反比例函数图象与正比例函数的图象交于A、B两点,则OA=OB.‎ ‎2.反比例函数图象若与一次函数的图象交于A、B两点,与坐标轴交于点C、D,则AD=BC,AC=BD.‎ ‎3.反比例函数图象与正比例函数的图象交于A、B两点,过点A作y轴垂线,垂足为C,连接BC并延长交反比例函数的图象于点D,连接AD,则DA=DC.‎ ‎3.反比例函数图象上任取一点A,过点A作y轴垂线,垂足为C,作AC的垂直平分线与反比例函数的图象于点B,与x轴交于点D,连接AD、DC、CB、BA,则AD=DC=CB=BA(即四边形ABCD是菱形).‎ 唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。‎ ‎4.矩形ABCO的边OC、OA分别在x轴y轴上,如图,AB边与反比例函数图像交于点D,BC边与反比例函数图像交于点E,则AD:DB=CE:EB.‎ ‎5.反比例函数图像上任取两点A、D两点,分别过A点和D点作x轴和y轴的垂线,垂足分别为B和F,AB和FD交于点M,则FM:MD=BM:MA.‎ 四.有关角的关系:‎ ‎1.点A和点B是反比例函数图像两点,C点是x轴上一点,D点是y轴上一点,四边形ABCD是平行四边形,如图,则∠1=∠2,∠3=∠4.‎ ‎2.点A和点B是反比例函数图像两点,C点是x轴上一点,D点是y轴上一点,四边形ABCD是平行四边形,延长AD交x轴于点E,延长BC交y轴于点F,连接EF,如图,则∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,四边形DCFE为菱形。‎ 一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。3.点A和点B是反比例函数图像两点,直线AB与x轴交于点F,与y轴交于点E,连接AO并延长交反比例函数图象的另一支曲线于点C,连接BC交y轴于点D,交x轴于G,则∠1=∠2,∠3=∠4,BD=BE,BF=BG。‎ 要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。‎ 教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。‎
查看更多

相关文章

您可能关注的文档