- 2021-05-13 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
深圳中考数学不等式方程组函数应用题含答案
第二节 不等式,方程(组)与函数应用题 【例题经典】 例1 近年来,由于土地沙化日渐加剧,沙尘暴频繁,严重影响国民生活.为了解某地区土地沙化情况,环保部门对该地区进行了连续四年跟踪观测,所记录的近似数据如下: 观测时间 第1年 第2年 第3年 第4年 沙漠面积 90万亩 90.2万亩 90.4万亩 90.6万亩 (1)根据表中提供的信息,在不采取任何措施的情况下,试写出该地区沙漠面积y(万亩)与x(年数)之间的关系式;并计算到第20年时该地区的沙漠面积. (2)为了防沙治沙,政府决定投入资金,鼓励农民植树种草.经测算,植树1亩需资金200元,种草1亩需资金100元.某组农民计划在一年内完成2400亩绿化任务,在实施中,由于实际情况所限,植树完成了计划的90%,种草超额完成了计划的20%,恰好完成了计划的绿化任务.那么所节余的资金还能植树多少亩? 【点评】培养学生一次函数的建模能力、解决问题的能力. 例2 (2006年深圳市)工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等. (1)该工艺品每件的进价、标价分别为多少元? (2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元? 【点评】二次函数的常规应用题,要注意探究二次函数关系式. 【考点精练】 1.(2006年常德市)某电器经营业主计划购进一批同种型号的挂式空调和电风扇,若购进8台空调和20台电风扇,需要资金17400元,若购进10台空调和30台电风扇,需要资金22500元. (1)求挂式空调和电风扇每台的采购价各是多少元? (2)该经营业主计划购进这两种电器共70台,而可用于购买这两种电器的资金不超过30000元,根据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.该业主希望当这种电器销售完时,所获得的利润不少于3500元,试写出该经营业主有哪几种进货方案?哪种方案获利最大?最大利润是多少? 2.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍一付定价60元,乒乓球每盒定价10元.今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买一付乒乓球拍赠两盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2付乒乓球拍,乒乓球若干盒(不少于4盒). 设该校要买乒乓球x盒,所需商店在甲商店购买需用y1元,在乙商店购买需用y2元. (1)请分别写出y1、y2与x之间的函数关系式(不必注明自变量x的取值范围); (2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜. (3)若该校要买2付乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案. 3.(2006年绵阳市)某产品每件的成本是120元,为了解市场规律,试销阶段按两种方案进行销售,结果如下: 方案甲:保持每件150元的售价不变,此时日销售量为50件; 方案乙:不断地调整售价,此时发现日销售量y(件)是售价x(元)的一次函数,且前三天的销售情况如下表: x(元) 130 150 160 y(件) 70 50 40 (1)如果方案乙中的第四天、第五天售价均为180元,那么前五天中,哪种方案的销售总利润大? (2)分析两种方案,为获得最大日销售利润,每件产品的售价应定为多少元?此时,最大日销售利润S是多少?(注:销售利润=销售额-成本额,销售额=售价×销售量) 4.在黄州服装批发市场,某种品牌的时装当季节即将来临时,价格呈上升趋势,设这种时装开始定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售. (1)试建立销售价y与周次x之间的函数关系式; (2)若这种时装每件进价Z与周次x之间的关系为Z=-0.125(x-8)2+12,1≤x≤16,且x为整数,试问该服装第几周出售时,每件销售利润最大?最大利润是多少? 5.(2006年河北省)利达经销店某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其他费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元). (1)当每吨售价是240元时,计算此时的月销售量; (2)求出y与x的函数关系式(不要求写出x的取值范围); (3)该经销店要获得最大月利润,售价应定为每吨多少元? (4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 6.心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力y随时间t变化规律有如下关系式: y= (1)讲课开始后第5分钟时与讲课开始后第25分钟时比较,何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目? 7.(2006年盐城市)国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度.某市根据本地的实际情况,制定了纳入医疗保险的农民医疗费用报销规定,享受医保的农民可以定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销.医疗费的报销比例标准如下表: 费用范围 500元以下 (含500元) 超过500元且不超 过10000元的部分 超过10000 元的部分 报销比例 标 准 不予报销 70% 80% (1)设某农民一年的实际医疗费为x元(500查看更多