- 2021-05-13 发布 |
- 37.5 KB |
- 45页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018中考总复习圆
2017中考数学全国试题汇编------圆 24(2017.北京)如图,是的一条弦,是的中点,过点作于点,过点作的切线交的延长线于点. (1)求证:; (2)若,求的半径. 【解析】 试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论. 试题解析:(1)证明:∵DC⊥OA, ∴∠1+∠3=90°, ∵BD为切线,∴OB⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中, ∠4=∠5,∴DE=DB. 考点:圆的性质,切线定理,三角形相似,三角函数 27(2017甘肃白银).如图,是的直径,轴, 交于点. (1)若点,求点的坐标; (2)若为线段的中点,求证:直线是的切线. 解:(1)∵A的坐标为(0,6),N(0,2) ∴AN=4, 1分 ∵∠ABN=30°,∠ANB=90°, ∴AB=2AN=8, 2分 ∴由勾股定理可知:NB=, ∴B(,2) 3分 (2)连接MC,NC 4分 ∵AN是⊙M的直径, ∴∠ACN=90°, ∴∠NCB=90°, 5分 x y C D MD OMD BAND ND AND 在Rt△NCB中,D为NB的中点, ∴CD=NB=ND, ∴∠CND=∠NCD, 6分 ∵MC=MN, ∴∠MCN=∠MNC. ∵∠MNC+∠CND=90°, ∴∠MCN+∠NCD=90°, 7分 即MC⊥CD. ∴直线CD是⊙M的切线. 8分 25(2017广东广州).如图14,是的直径, ,连接. (1)求证:; (2)若直线为的切线,是切点,在直线上取一点,使所在的直线与所在的直线相交于点,连接. ①试探究与之间的数量关系,并证明你的结论; ②是否为定值?若是,请求出这个定值;若不是,请说明理由. 【解析】 试题分析:(1)直径所对的圆周角是圆心角的一半,等弧所对的圆周角是圆心角的一半;(2 )①等角对等边;② (2)①如图所示,作 于F 由(1)可得, 为等腰直角三角形. 是 的中点. 为等腰直角三角形. 又 是 的切线, 四边形 为矩形 ②当 为钝角时,如图所示,同样, (3)当D在C左侧时,由(2)知 , , 在 中, 当D在C右侧时,过E作 于 在 中, 考点:圆的相关知识的综合运用 25(2017贵州六盘水).如图,是的直径,,点在上,,为的中点,是直径上一动点. (1) 利用尺规作图,确定当最小时点的位置 (2) (不写作法,但要保留作图痕迹). (2)求的最小值. 【考点】圆,最短路线问题. 【分析】(1)画出A点关于MN的称点,连接B,就可以得到P点 (2)利用得∠AON=∠=60°,又为弧AN的中点,∴∠BON=30°,所以∠ON=90°,再求最小值. 【解答】解: 20(2017湖北黄冈).已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN. 求证:(1)DE是⊙O的切线; (2)ME2=MD•MN. 【考点】S9:相似三角形的判定与性质;ME:切线的判定与性质. 【分析】(1)求出OE∥DM,求出OE⊥DE,根据切线的判定得出即可; (2)连接EN,求出∠MDE=∠MEN,求出△MDE∽△MEN,根据相似三角形的判定得出即可. 【解答】证明:(1)∵ME平分∠DMN, ∴∠OME=∠DME, ∵OM=OE, ∴∠OME=∠OEM, ∴∠DME=∠OEM, ∴OE∥DM, ∵DM⊥DE, ∴OE⊥DE, ∵OE过O, ∴DE是⊙O的切线; (2) 连接EN, ∵DM⊥DE,MN为⊙O的半径, ∴∠MDE=∠MEN=90°, ∵∠NME=∠DME, ∴△MDE∽△MEN, ∴=, ∴ME2=MD•MN 23. (2017湖北十堰)已知AB为半⊙O的直径,BC⊥AB于B,且BC=AB, D为半⊙O上的一点,连接BD并延长交半⊙O的切线AE于E. (1) 如图1,若CD=CB,求证:CD是⊙O的切线; (2) 如图2,若F点在OB上,且CD⊥DF,求的值. ∵∠3+∠EAD=90°,∠E+∠EAD=90° ∴∠3=∠E 又∵∠ADE=∠ADB=90° ∴△ADE~△ABD ∴ ∴ ∴ (1)证明:略;(此问简单) (2)连接AD. ∵DF⊥DC ∴∠1+∠BDF=90° ∵AB是⊙O的直径 ∴∠2+∠BDF=90° ∴∠1=∠2 又∵∠3+∠ABD=90°, ∠4+∠ABD=90° ∴∠3=∠4 ∴△ADF~△BCD 21.(2017湖北武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D (1) 求证:AO平分∠BAC (2) 若BC=6,sin∠BAC=,求AC和CD的长 【答案】(1)证明见解析;(2);. (2)过点C作CE⊥AB于E ∵sin∠BAC=,设AC=5m,则CE=3m ∴AE=4m,BE=m 在RtΔCBE中,m2+(3m)2=36 ∴m=, ∴AC= 延长AO交BC于点H,则AH⊥BC,且BH=CH=3, 考点:1.全等三角形的判定与性质;2.解直角三角形;3.平行线分线段成比例. 21. (2017湖北咸宁)如图,在中,,以为直径的⊙与边分别交于两点,过点作,垂足为点. ⑴求证:是⊙的切线; ⑵若,求的长 【考点】ME:切线的判定与性质;KH:等腰三角形的性质;T7:解直角三角形. 【分析】(1)证明:如图,连接OD,作OG⊥AC于点G,推出∠ODB=∠C;然后根据DF⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF是⊙O的切线. (2)首先判断出:AG=AE=2,然后判断出四边形OGFD为矩形,即可求出DF的值是多少. 【解答】(1)证明:如图,连接OD,作OG⊥AC于点G, ∵OB=OD, ∴∠ODB=∠B, 又∵AB=AC, ∴∠C=∠B, ∴∠ODB=∠C, ∵DF⊥AC, ∴∠DFC=90°, ∴∠ODF=∠DFC=90°, ∴DF是⊙O的切线. (2)解:AG=AE=2, ∵cosA=, ∴OA===5, ∴OG==, ∵∠ODF=∠DFG=∠OGF=90°, ∴四边形OGFD为矩形, ∴DF=OG=. 23(2017湖北孝感). 如图,的直径 弦的平分线交于 过点作 交延长线于点,连接 (1)由,,围成的曲边三角形的面积是 ; (2)求证:是的切线;(3)求线段的长. 【分析】(1)连接OD,由AB是直径知∠ACB=90°,结合CD平分∠ACB知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S扇形AOD+S△BOD可得答案; (2)由∠AOD=90°,即OD⊥AB,根据DE∥AB可得OD⊥DE,即可得证; (3)勾股定理求得BC=8,作AF⊥DE知四边形AODF是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC知tan∠EAF=tan∠CBA,即=,求得EF的长即可得. 【解答】解:(1)如图,连接OD, ∵AB是直径,且AB=10, ∴∠ACB=90°,AO=BO=DO=5, ∵CD平分∠ACB, ∴∠ABD=∠ACD=∠ACB=45°, ∴∠AOD=90°, 则曲边三角形的面积是S扇形AOD+S△BOD=+×5×5=+, 故答案为: +; (2)由(1)知∠AOD=90°,即OD⊥AB, ∵DE∥AB, ∴OD⊥DE, ∴DE是⊙O的切线; (3)∵AB=10、AC=6, ∴BC==8, 过点A作AF⊥DE于点F,则四边形AODF是正方形, ∴AF=OD=FD=5, ∴∠EAF=90°﹣∠CAB=∠ABC, ∴tan∠EAF=tan∠CBA, ∴=,即=, ∴, ∴DE=DF+EF=+5=. 【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键. 25(2017湖北荆州).如图在平面直角坐标系中,直线y=﹣x+ 3与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q. (1)求证:直线AB是⊙Q的切线; (2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围); (3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由. 【考点】FI:一次函数综合题. 【分析】(1)只要证明△PAQ∽△BAO,即可推出∠APQ=∠AOB=90°,推出QP⊥AB,推出AB是⊙O的切线; (2)分两种情形求解即可:①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.分别列出方程即可解决问题. (3)分两种情形讨论即可,一共有四个点满足条件. 【解答】(1)证明:如图1中,连接QP. 在Rt△AOB中,OA=4,OB=3, ∴AB==5, ∵AP=4t,AQ=5t, ∴==,∵∠PAQ=∠BAO, ∴△PAQ∽△BAO, ∴∠APQ=∠AOB=90°, ∴QP⊥AB, ∴AB是⊙O的切线. (2)解:①如图2中,当直线CM在⊙O的左侧与⊙Q相切时, 设切点为D,则四边形PQDM是正方形. 易知PQ=DQ=3t,CQ=•3t=, ∵OC+CQ+AQ=4, ∴m+t+5t=4, ∴m=4﹣t. ②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形. ∵OC+AQ﹣CQ=4, ∴m+5t﹣t=4, ∴m=4﹣t. (3)解:存在.理由如下: 如图4中,当⊙Q在y则的右侧与y轴相切时, 3t+5t=4,t=, 由(2)可知,m=﹣或. 如图5中,当⊙Q在y则的左侧与y轴相切时,5t﹣3t=4,t=2, 由(2)可知,m=﹣或. 综上所述,满足条件的点C的坐标为(﹣,0)或(,0)或(﹣,0)或(,0). 22.(2017湖北鄂州)如图,已知BF是⊙O的直径,A为 ⊙O上(异于B、F)一点. ⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA =PD,AD的延长线交⊙O于点E. (1)求证:= ; (2)若ED、EA的长是一元二次方程x2-5x+5=0的两根,求BE的长; (3)若MA =6, , 求AB的长. (1)∵PA =PD ∴∠PAD=∠PDA ∴∠BAD+∠PAB=∠DBE+∠E ∵⊙O的切线MA ∴∠PAB=∠DBE ∴∠BAD=∠CBE∴= (2) ∵ED、EA的长是一元二次方程x2-5x+5=0的两根、 ∴ED·EA=5 ∵∠BAD=∠CBE,∠E=∠E ∴△BDE∽△ABE ∴BE2=ED·EA=5 ∴BE= 21.(2017湖北黄石)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE. (1)求证:DB=DE; (2)求证:直线CF为⊙O的切线. 【考点】MI:三角形的内切圆与内心;MD:切线的判定. 【分析】(1)欲证明DB=DE,只要证明∠DBE=∠DEB; (2)欲证明直线CF为⊙O的切线,只要证明BC⊥CF即可; 【解答】(1)证明:∵E是△ABC的内心, ∴∠BAE=∠CAE,∠EBA=∠EBC, ∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC, ∴∠DBE=∠DEB, ∴DB=DE. (2)连接CD. ∵DA平分∠BAC, ∴∠DAB=∠DAC, ∴=, ∴BD=CD, ∵BD=DF, ∴CD=DB=DF, ∴∠BCF=90°, ∴BC⊥CF, ∴CF是⊙O的切线. 23(2017湖北恩施).如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C的切线与EB的延长线交于点P,连接BC. (1)求证:BC平分∠ABP; (2)求证:PC2=PB•PE; (3)若BE﹣BP=PC=4,求⊙O的半径. 【考点】MC:切线的性质;KD:全等三角形的判定与性质;S9:相似三角形的判定与性质. 【分析】(1)由BE∥CD知∠1=∠3,根据∠2=∠3即可得∠1=∠2; (2)连接EC、AC,由PC是⊙O的切线且BE∥DC,得∠1+∠4=90°,由∠A+∠2=90°且∠A=∠5知∠5+∠2=90°,根据∠1=∠2得∠4=∠5,从而证得△PBC∽△PCE即可; (3)由PC2=PB•PE、BE﹣BP=PC=4求得BP=2、BE=6,作EF⊥CD可得PC=FE=4、FC=PE=8,再Rt△DEF≌Rt△BCP得DF=BP=2,据此得出CD的长即可. 【解答】解:(1)∵BE∥CD, ∴∠1=∠3, 又∵OB=OC, ∴∠2=∠3, ∴∠1=∠2,即BC平分∠ABP; (2)如图,连接EC、AC, ∵PC是⊙O的切线, ∴∠PCD=90°, 又∵BE∥DC, ∴∠P=90°, ∴∠1+∠4=90°,[ ∵AB为⊙O直径, ∴∠A+∠2=90°, 又∠A=∠5, ∴∠5+∠2=90°, ∵∠1=∠2, ∴∠5=∠4, ∵∠P=∠P, ∴△PBC∽△PCE, 即PC2=PB•PE; (3)∵BE﹣BP=PC=4, ∴BE=4+BP, ∵PC2=PB•PE=PB•(PB+BE), ∴42=PB•(PB+4+PB),即PB2+2PB﹣8=0, 解得:PB=2, 则BE=4+PB=6, ∴PE=PB+BE=8, 作EF⊥CD于点F, ∵∠P=∠PCF=90°, ∴四边形PCFE为矩形, ∴PC=FE=4,FC=PE=8,∠EFD=∠P=90°, ∵BE∥CD, ∴DE=BC, 在Rt△DEF和Rt△BCP中, ∴Rt△DEF≌Rt△BCP(HL), ∴DF=BP=2, 则CD=DF+CF=10, ∴⊙O的半径为5. 22(2017湖北随州).如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙ O与BC相切于点D,交AB于点E. (1)求证:AD平分∠BAC; (2)若CD=1,求图中阴影部分的面积(结果保留π). 【考点】MC:切线的性质;KF:角平分线的性质;KW:等腰直角三角形;MO:扇形面积的计算. 【分析】(1)连接DE,OD.利用弦切角定理,直径所对的圆周角是直角,等角的余角相等证明∠DAO=∠CAD,进而得出结论; (2)根据等腰三角形的性质得到∠B=∠BAC=45°,由BC相切⊙O于点D,得到∠ODB=90°,求得OD=BD,∠BOD=45°,设BD=x,则OD=OA=x,OB=x,根据勾股定理得到BD=OD=,于是得到结论. 【解答】(1)证明:连接DE,OD. ∵BC相切⊙O于点D, ∴∠CDA=∠AED, ∵AE为直径, ∴∠ADE=90°, ∵AC⊥BC, ∴∠ACD=90°, ∴∠DAO=∠CAD, ∴AD平分∠BAC; (2)∵在Rt△ABC中,∠C=90°,AC=BC, ∴∠B=∠BAC=45°, ∵BC相切⊙O于点D, ∴∠ODB=90°, ∴OD=BD,∴∠BOD=45°, 设BD=x,则OD=OA=x,OB=x, ∴BC=AC=x+1, ∵AC2+BC2=AB2, ∴2(x+1)2=(x+x)2, ∴x=, ∴BD=OD=, ∴图中阴影部分的面积=S△BOD﹣S扇形DOE=﹣=1﹣. 22(2017湖北襄阳).如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC. (1)求证:EF是⊙O的切线; (2)若DE=1,BC=2,求劣弧的长l. 【考点】ME:切线的判定与性质;MN:弧长的计算. 【分析】(1)连接OC,根据等腰三角形的性质得到 ∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC, 得到∠OCF=∠AEC=90°,于是得到结论; (2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论. 【解答】(1)证明:连接OC, ∵OA=OC, ∴∠OAC=∠DAC,∴∠DAC=∠OCA, ∴AD∥OC, ∵∠AEC=90°,∴∠OCF=∠AEC=90°, ∴EF是⊙O的切线; (2)连接OD,DC, ∵∠DAC=DOC,∠OAC=BOC, ∴∠DAC=∠OAC, ∵ED=1,DC=2, ∴sin∠ECD=, ∴∠ECD=30°, ∴∠OCD=60°, ∵OC=OD, ∴△DOC是等边三角形, ∴∠BOC=∠COD=60°,OC=2, ∴l==π. 21(2017湖北宜昌).已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB. (1)求证:DE=OE; (2)若CD∥AB,求证:四边形ABCD是菱形. 【考点】MC:切线的性质;L9:菱形的判定. 【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论; (2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可. 【解答】解:(1)如图,连接OD, ∵CD是⊙O的切线, ∴OD⊥CD, ∴∠2+∠3=∠1+∠COD=90°, ∵DE=EC, ∴∠1=∠2, ∴∠3=∠COD, ∴DE=OE; (2)∵OD=OE, ∴OD=DE=OE, ∴∠3=∠COD=∠DEO=60°, ∴∠2=∠1=30°, ∵OA=OB=OE,OE=DE=EC, ∴OA=OB=DE=EC, ∵AB∥CD, ∴∠4=∠1, ∴∠1=∠2=∠4=∠OBA=30°, ∴△ABO≌△CDE, ∴AB=CD, ∴四边形A∴D是平行四边形, ∴∠DAE=∠DOE=30°, ∴∠1=∠DAE, ∴CD=AD, ∴▱ABCD是菱形. 24(2017江苏南通).如图,Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,求弦BE的长. 【考点】MC:切线的性质;KQ:勾股定理. 【分析】连接OD,首先证明四边形OECD是矩形,从而得到BE的长,然后利用垂径定理求得BF的长即可. 【解答】解:连接OD,作OE⊥BF于点E. ∴BE=BF, ∵AC是圆的切线, ∴OD⊥AC, ∴∠ODC=∠C=∠OFC=90°, ∴四边形ODCF是矩形, ∵OD=OB=EC=2,BC=3, ∴BE=BC﹣EC=BC﹣OD=3﹣2=1, ∴BF=2BE=2. 26(2017江苏镇江).如图,中,,点在上,,过两点的圆的圆心在上.(1)利用直尺和圆规在图1中画出⊙(不写作法,保留作图痕迹,并用黑色水笔把线条描清楚); (2)判断所在直线与(1)中所作的⊙的位置关系,并证明你的结论; (3)设⊙交于点,连接,过点作,为垂足.若点是线段的黄金分割点(即,)如图2,试说明四边形是正方形. 25(2017江苏扬州).如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF. (1)判断直线DE与半圆O的位置关系,并说明理由; (2)①求证:CF=OC; ②若半圆O的半径为12,求阴影部分的周长. 【考点】MB:直线与圆的位置关系;L5:平行四边形的性质;MN:弧长的计算. 【分析】(1)结论:DE是⊙O的切线.首先证明△ABO,△BCO都是等边三角形,再证明四边形BDCG是矩形,即可解决问题; (2)①只要证明△OCF是等边三角形即可解决问题; ②求出EC、EF、弧长CF即可解决问题. 【解答】解:(1)结论:DE是⊙O的切线. 理由:∵四边形OABC是平行四边形, 又∵OA=OC, ∴四边形OABC是菱形, ∴OA=OB=AB=OC=BC, ∴△ABO,△BCO都是等边三角形, ∴∠AOB=∠BOC=∠COF=60°, ∵OB=OF, ∴OG⊥BF, ∵AF是直径,CD⊥AD, ∴∠ABF=∠DBG=∠D=∠BGC=90°, ∴四边形BDCG是矩形, ∴∠OCD=90°, ∴DE是⊙O的切线. (2)①由(1)可知:∠COF=60°,OC=OF, ∴△OCF是等边三角形, ∴CF=OC. ②在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°, ∴OE=2OC=24,EC=12, ∵OF=12, ∴EF=12, ∴的长==4π, ∴阴影部分的周长为4π+12+12. 24(2017江苏盐城).如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部. (1) 如图①,当圆形纸片与两直角边AC、BC都相切时, (2) 试用直尺与圆规作出射线CO; (3) (不写作法与证明,保留作图痕迹) (2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周, 回到起点位置时停止,若BC=9,圆形纸片的半径为2, 求圆心O运动的路径长. 【考点】O4:轨迹;MC:切线的性质;N3:作图—复杂作图. 【分析】(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可; (2)添加如图所示辅助线,圆心O的运动路径长为,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案. 【解答】解:(1)如图①所示,射线OC即为所求; (2)如图,圆心O的运动路径长为, 过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G, 过点O作OE⊥BC,垂足为点E,连接O2B, 过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I, 在Rt△ABC中,∠ACB=90°、∠A=30°, ∴AC===9,AB=2BC=18,∠ABC=60°, ∴C△ABC=9+9+18=27+9, ∵O1D⊥BC、O1G⊥AB, ∴D、G为切点, ∴BD=BG, 在Rt△O1BD和Rt△O1BG中, ∵, ∴△O1BD≌△O1BG(HL), ∴∠O1BG=∠O1BD=30°, 在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°, ∴BD===2, ∴OO1=9﹣2﹣2=7﹣2, ∵O1D=OE=2,O1D⊥BC,OE⊥BC, ∴O1D∥OE,且O1D=OE, ∴四边形OEDO1为平行四边形, ∵∠OED=90°, ∴四边形OEDO1为矩形, 同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形, 又OE=OF, ∴四边形OECF为正方形, ∵∠O1GH=∠CDO1=90°,∠ABC=60°, ∴∠GO1D=120°, 又∵∠FO1D=∠O2O1G=90°, ∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC, 同理,∠O1OO2=90°, ∴△OO1O2∽△CBA, ∴=,即=, ∴=15+,即圆心O运动的路径长为15+. 25(2017江苏盐城).如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙ F与y轴相交于另一点G. (1)求证:BC是⊙F的切线; (2)若点A、D的坐标分别为A(0,﹣1), D(2,0),求⊙F的半径; 试探究线段AG、AD、CD三者之间满足 的等量关系,并证明你的结论. 【考点】MR:圆的综合题. 【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论; (2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可; (3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可. 【解答】(1)证明:连接EF, ∵AE平分∠BAC, ∴∠FAE=∠CAE, ∵FA=FE, ∴∠FAE=∠FEA, ∴∠FEA=∠EAC, ∴FE∥AC, ∴∠FEB=∠C=90°,即BC是⊙F的切线; (2)解:连接FD, 设⊙F的半径为r, 则r2=(r﹣1)2+22, 解得,r=,即⊙F的半径为; (3)解:AG=AD+2CD. 证明:作FR⊥AD于R, 则∠FRC=90°,又∠FEC=∠C=90°, ∴四边形RCEF是矩形, ∴EF=RC=RD+CD, ∵FR⊥AD, ∴AR=RD, ∴EF=RD+CD=AD+CD, ∴AG=2FE=AD+2CD. 27、(2017•苏州)如图,已知 内接于 , 是直径,点 在 上, ,过点 作 ,垂足为 ,连接 交 边于点 . (1)求证: ∽ ; (2)求证: ; (3)连接 ,设 的面积为 , 四边形 的面积为 ,若 ,求 的值. (1)证明:∵AB是圆O的直径, ∴∠ACB=90°, ∵DE⊥AB, ∴∠DEO=90°, ∴∠DEO=∠ACB, ∵OD//BC, ∴∠DOE=∠ABC, ∴△DOE~△ABC, (2)证明:∵△DOE~△ABC, ∴∠ODE=∠A, ∵∠A和∠BDC是弧BC所对的圆周角, ∴∠A=∠BDC, ∴∠ODE=∠BDC, ∴∠ODF=∠BDE。 (3)解:因为△DOE~△ABC , 所以, 即=4=4 因为OA=OB, 所以=,即=2, 因为=,S2=++=2S1+S1+, 所以=, 所以BE=OE,即OE=OB=OD, 所以sinA=sin∠ODE== 【考点】圆周角定理,相似三角形的性质,相似三角形的判定与性质 【解析】【分析】(1)易证∠DEO=∠ACB=90°和∠DOE=∠ABC,根据“有两对角相等的两个三角形相似”判定△DOE~△ABC; (2)由△DOE~△ABC,可得∠ODE=∠A,由∠A和∠BDC是弧BC所对的圆周角,则∠A=∠BDC,从而通过角的等量代换即可证得; (3)由∠ODE=∠A,可得sinA=sin∠ODE==;而由△DOE~△ABC ,可得, 即=4=4=, 即=2,又因为=,S2=++=2S1+S1+,则可得=, 可求得OE与OB的比值. 27(2017江苏无锡).如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2. (1)求点P的坐标; (2)求过点A和点E,且顶点在 直线CD上的抛物线的函数表达式. 【考点】MR:圆的综合题. 【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出===,推出CH=2n,EH=2m=6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题; (2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题; 【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m. ∵EH∥AP, ∴△ACP∽△ECH, ∴===, ∴CH=2n,EH=2m=6, ∵CD⊥AB, ∴PC=PD=n, ∵PB∥HE, ∴△DPB∽△DHE, ∴===, ∴=, ∴m=1, ∴P(1,0). (2)由(1)可知,PA=4,HE=8,EF=9, 连接OP,在Rt△OCP中,PC==2, ∴CH=2PC=4,PH=6, ∴E(9,6), ∵抛物线的对称轴为CD, ∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=, ∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣. 23.(2017山东济南) ()如图,在矩形中,,于点,求证:. ()如图,是⊙的直径,,求的度数. 【答案】见解析 【解析】()证明:在矩形中, ∵, ∴. 在和中, ∴≌, ∴. ()解:∵, ∴, ∵是⊙的直径, ∴. 在中,. 22(2017山东潍坊).如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA. (1)求证:EF为半圆O的切线; (2)若DA=DF=6,求阴影区域的面积. (结果保留根号和π) 【考点】ME:切线的判定与性质;MO:扇形面积的计算. 【分析】(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案; (2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案. 【解答】(1)证明:连接OD, ∵D为的中点, ∴∠CAD=∠BAD, ∵OA=OD, ∴∠BAD=∠ADO, ∴∠CAD=∠ADO, ∵DE⊥AC, ∴∠E=90°, ∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°, ∴OD⊥EF, ∴EF为半圆O的切线; (2)解:连接OC与CD, ∵DA=DF, ∴∠BAD=∠F, ∴∠BAD=∠F=∠CAD, 又∵∠BAD+∠CAD+∠F=90°, ∴∠F=30°,∠BAC=60°, ∵OC=OA, ∴△AOC为等边三角形, ∴∠AOC=60°,∠COB=120°, ∵OD⊥EF,∠F=30°, ∴∠DOF=60°, 在Rt△ODF中,DF=6, ∴OD=DF•tan30°=6, 在Rt△AED中,DA=6,∠CAD=30°, ∴DE=DA•sin30,EA=DA•cos30°=9, ∵∠COD=180°﹣∠AOC﹣∠DOF=60°, ∴CD∥AB, 故S△ACD=S△COD, ∴S阴影=S△AED﹣S扇形COD=×9×3﹣π×62=﹣6π. 23(2017山东威海).已知:AB为⊙O的直径,AB=2,弦DE=1,直线AD与BE相交于点C,弦DE在⊙O上运动且保持长度不变,⊙O的切线DF交BC于点F. (1)如图1,若DE∥AB,求证:CF=EF; (2)如图2,当点E运动至与点B重合时,试判断CF与BF是否相等,并说明理由. 【分析】(1)如图1,连接OD、OE,证得△OAD、△ODE、△OEB、△CDE是等边三角形,进一步证得DF⊥CE即可证得结论; (2)根据切线的性质以及等腰三角形的性质即可证得结论. 【解答】证明:如图1,连接OD、OE, ∵AB=2, ∴OA=OD=OE=OB=1, ∵DE=1, ∴OD=OE=DE, ∴△ODE是等边三角形, ∴∠ODE=∠OED=60°, ∵DE∥AB, ∴∠AOD=∠ODE=60°,∠EOB=∠OED=60°, ∴△AOD和△△OE是等边三角形, ∴∠OAD=∠OBE=60°, ∴∠CDE=∠OAD=60°,∠CED=∠OBE=60°, ∴△CDE是等边三角形, ∵DF是⊙O的切线, ∴OD⊥DF, ∴∠EDF=90°﹣60°=30°, ∴∠DFE=90°, ∴DF⊥CE, ∴CF=EF; (2)相等; 如图2,点E运动至与点B重合时,BC是⊙O的切线, ∵⊙O的切线DF交BC于点F, ∴BF=DF, ∴∠BDF=∠DBF, ∵AB是直径, ∴∠ADB=∠BDC=90°, ∴∠FDC=∠C, ∴DF=CF, ∴BF=CF. 【点评】本题考查了切线的性质、平行线的性质、等边三角形的判定、等腰三角形的判定和性质,作出辅助线构建等边三角形是解题的关键. 21(2017山东东营).如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F. (1)求证:DE⊥AC; (2)若DE+EA=8,⊙O的半径为10,求AF的长度. 【点评】本题考查了切线的性质,勾股定理, 矩形的判定与性质.解题时,利用了方程思想,属于中档题. 【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可; (2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16. 【解答】(1)证明:∵OB=OD, ∴∠ABC=∠ODB, ∵AB=AC, ∴∠ABC=∠ACB, ∴∠ODB=∠ACB, ∴OD∥AC. ∵DE是⊙O的切线,OD是半径, ∴DE⊥OD,∴DE⊥AC; (2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°, ∴四边形ODEH是矩形, ∴OD=EH,OH=DE. 设AH=x. ∵DE+AE=8,OD=10, ∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2. 在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102, 解得x1=8,x2=﹣6(不合题意,舍去). ∴AH=8. ∵OH⊥AF, ∴AH=FH=AF,∴AF=2AH=2×8=16. 24(2017山东烟台) .如图,菱形ABCD中,对角线AC,BD相交于点O,AC=12cm,BD=16cm,动点N从点D出发,沿线段DB以2cm/s的速度向点B运动,同时动点M从点B出发,沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随之停止,设运动时间为t(s)(t>0),以点M为圆心,MB长为半径的⊙M与射线BA,线段BD分别交于点E,F,连接EN. (1)求BF的长(用含有t的代数式表示),并求出t的取值范围; (2)当t为何值时,线段EN与⊙M相切? (3)若⊙M与线段EN只有一个公共点,求t的取值范围. 【考点】MR:圆的综合题. 【分析】(1)连接MF.只要证明MF∥AD,可得=,即=,解方程即可; (2)当线段EN与⊙M相切时,易知△BEN∽△BOA,可得=,即=,解方程即可; (3)①由题意可知:当0<t≤时,⊙M与线段EN只有一个公共点.②当F与N重合时,则有t+2t=16,解得t=,观察图象即可解决问题; 【解答】解:(1)连接MF. ∵四边形ABCD是菱形, ∴AB=AD,AC⊥BD,OA=OC=6,OB=OD=8, 在Rt△AOB中,AB==10, ∵MB=MF,AB=AD, ∴∠ABD=∠ADB=∠MFB, ∴MF∥AD, ∴=, ∴=, ∴BF=t(0<t≤8). (2)当线段EN与⊙M相切时,易知△BEN∽△BOA, ∴=, ∴=, ∴t=. ∴t=s时,线段EN与⊙M相切. (3)①由题意可知:当0<t≤时,⊙M与线段EN只有一个公共点. ②当F与N重合时,则有t+2t=16,解得t=, 关系图象可知,<t<8时,⊙M与线段EN只有一个公共点. 综上所述,当0<t≤或<t<8时,⊙M与线段EN只有一个公共点. 24(2017山东聊城).如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P. (1)求证:PD是⊙O的切线; (2)求证:△PBD∽△DCA; (3)当AB=6,AC=8时,求线段PB的长. 【考点】S9:相似三角形的判定与性质;ME:切线的判定与性质. 【分析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证; (2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似即可得证; (3)由三角形ABC为直角三角形,利用勾股定理求出BC的长,再由OD垂直平分BC,得到DB=DC,根据(2)的相似,得比例,求出所求即可. 【解答】(1)证明:∵圆心O在BC上, ∴BC是圆O的直径, ∴∠BAC=90°, 连接OD, ∵AD平分∠BAC, ∴∠BAC=2∠DAC, ∵∠DOC=2∠DAC, ∴∠DOC=∠BAC=90°,即OD⊥BC, ∵PD∥BC, ∴OD⊥PD, ∵OD为圆O的半径, ∴PD是圆O的切线; (2)证明:∵PD∥BC, ∴∠P=∠ABC, ∵∠ABC=∠ADC, ∴∠P=∠ADC, ∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°, ∴∠PBD=∠ACD, ∴△PBD∽△DCA; (3)解:∵△ABC为直角三角形, ∴BC2=AB2+AC2=62+82=100, ∴BC=10, ∵OD垂直平分BC, ∴DB=DC, ∵BC为圆O的直径, ∴∠BDC=90°, 在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100, ∴DC=DB=5, ∵△PBD∽△DCA, ∴=, 则PB===. 23(2017山东临沂).如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB; (2)若∠BAC=90°,BD=4,求△ABC外接圆的半径. 【考点】MA:三角形的外接圆与外心. 【分析】(1)由角平分线得出∠ABE=∠CBE,∠BAE=∠CAD, 得出,由圆周角定理得出∠DBC=∠CAD,证出∠DBC=∠BAE, 再由三角形的外角性质得出 ∠DBE=∠DEB,即可得出DE=DB; (2)由(1)得:,得出CD=BD=4,由圆周角定理得出BC是直径,∠BDC=90°,由勾股定理求出BC==4,即可得出△ABC外接圆的半径. 【解答】(1)证明:∵BE平分∠BAC,AD平分∠ABC, ∴∠ABE=∠CBE,∠BAE=∠CAD, ∴, ∴∠DBC=∠CAD, ∴∠DBC=∠BAE, ∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE, ∴∠DBE=∠DEB, ∴DE=DB; (2)解:连接CD,如图所示: 由(1)得:, ∴CD=BD=4, ∵∠BAC=90°, ∴BC是直径, ∴∠BDC=90°, ∴BC==4, ∴△ABC外接圆的半径=×4=2. 20(2017山东德州).如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E. (1)求证:DE是⊙O的切线; (2)若AE:EB=1:2,BC=6,求AE的长. 【考点】S9:相似三角形的判定与性质;ME:切线的判定与性质. 【分析】(1)求出∠OED=∠BCA=90°,根据切线的判定得出即可; (2)求出△BEC∽△BCA,得出比例式,代入求出即可. 【解答】(1)证明: 连接OE、EC, ∵AC是⊙O的直径, ∴∠AEC=∠BEC=90°, ∵D为BC的中点, ∴ED=DC=BD, ∴∠1=∠2, ∵OE=OC, ∴∠3=∠4, ∴∠1+∠3=∠2+∠4, 即∠OED=∠ACB, ∵∠ACB=90°, ∴∠OED=90°, ∴DE是⊙O的切线; (2)解:由(1)知:∠BEC=90°, ∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA, ∴△BEC∽△BCA, ∴=, ∴BC2=BE•BA, ∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x, ∵BC=6, ∴62=2x•3x, 解得:x=, 即AE=. 22(2017山东枣庄).如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F. (1)试判断直线BC与⊙O的位置关系,并说明理由; (2)若BD=2,BF=2,求阴影部分的面积(结果保留π). 【考点】MB:直线与圆的位置关系;MO:扇形面积的计算. 【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线; (2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF面积即可确定出阴影部分面积. 【解答】解:(1)BC与⊙O相切. 证明:连接OD. ∵AD是∠BAC的平分线, ∴∠BAD=∠CAD. 又∵OD=OA, ∴∠OAD=∠ODA. ∴∠CAD=∠ODA. ∴OD∥AC. ∴∠ODB=∠C=90°,即OD⊥BC. 又∵BC过半径OD的外端点D, ∴BC与⊙O相切. (2)设OF=OD=x,则OB=OF+BF=x+2, 根据勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12, 解得:x=2,即OD=OF=2, ∴OB=2+2=4, ∵Rt△ODB中,OD=OB, ∴∠B=30°, ∴∠DOB=60°, ∴S扇形AOB==, 则阴影部分的面积为S△ODB﹣S扇形DOF=×2×2﹣=2﹣. 故阴影部分的面积为2﹣. 23.(2017山东滨州) 如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC. (1)求证:直线DM是⊙O的切线; (2)求证:DE2=DF·DA. 思路分析:(1)①连接DO,并延长交⊙O于点G,连接BG;②证明∠BAD=∠DAC;③证明∠G=∠BAD;④证明∠MDB=∠G;⑤证明∠GDM=90°;(2)①利用相似证明BD2=DF·DA;②利用等角对等边证明DB=DE. 证明:(1)如答图1,连接DO,并延长交⊙O于点G,连接BG; ∵点E是△ABC的内心,∴AD平分∠BAC,∴∠BAD=∠DAC.[ ∵∠G=∠BAD,∴∠MDB=∠G, A G ∵DG为⊙O的直径,∴∠GBD=90°,∴∠G+∠BDG=90°. A G ∴∠MDB+∠BDG=90°.∴直线DM是⊙O的切线; AA 答图1 答图2 (2)如答图2,连接BE. ∵点E是△ABC的内心,∴∠ABE=∠CBE,∠BAD=∠CAD. ∵∠EBD=∠CBE+∠CBD,∠BED=∠ABE+∠BAD,∠CBD=∠CAD. ∴∠EBD=∠BED,∴DB=DE. ∵∠CBD=∠BAD,∠ADB=∠ADB,∴△DBF∽△DAB,∴BD2=DF·DA. ∴DE2=DF·DA. 24(2017浙江温州).如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE. (1)当∠APB=28°时,求∠B和的度数; (2)求证:AC=AB. (3)在点P的运动过程中 ①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值; ②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比. 【考点】MR:圆的综合题. 【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°; (2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB; (3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或; ②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的面积之比. 【解答】解:(1)∵MN⊥AB,AM=BM, ∴PA=PB, ∴∠PAB=∠B, ∵∠APB=28°, ∴∠B=76°, 如图1,连接MD, ∵MD为△PAB的中位线, ∴MD∥AP, ∴∠MDB=∠APB=28°, ∴=2∠MDB=56°; (2)∵∠BAC=∠MDC=∠APB, 又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B, ∴∠BAP=∠ACB, ∵∠BAP=∠B, ∴∠ACB=∠B, ∴AC=AB; (3)①如图2,记MP与圆的另一个交点为R, ∵MD是Rt△MBP的中线, ∴DM=DP, ∴∠DPM=∠DMP=∠RCD, ∴RC=RP, ∵∠ACR=∠AMR=90°, ∴AM2+MR2=AR2=AC2+CR2, ∴12+MR2=22+PR2, ∴12+(4﹣PR)2=22+PR2, ∴PR=, ∴MR=, Ⅰ.当∠ACQ=90°时,AQ为圆的直径, ∴Q与R重合, ∴MQ=MR=; Ⅱ.如图3,当∠QCD=90°时, 在Rt△QCP中,PQ=2PR=, ∴MQ=; Ⅲ.如图4,当∠QDC=90°时, ∵BM=1,MP=4, ∴BP=, ∴DP=BP=, ∵cos∠MPB==, ∴PQ=, ∴MQ=; Ⅳ.如图5,当∠AEQ=90°时, 由对称性可得∠AEQ=∠BDQ=90°, ∴MQ=; 综上所述,MQ的值为或或; ②△ACG和△DEG的面积之比为. 理由:如图6,∵DM∥AF, ∴DF=AM=DE=1, 又由对称性可得GE=GD, ∴△DEG是等边三角形, ∴∠EDF=90°﹣60°=30°, ∴∠DEF=75°=∠MDE, ∴∠GDM=75°﹣60°=15°, ∴∠GMD=∠PGD﹣∠GDM=15°, ∴GMD=∠GDM, ∴GM=GD=1, 过C作CH⊥AB于H, 由∠BAC=30°可得CH=AC=AB=1=MG,AH=, ∴CG=MH=﹣1, ∴S△ACG=CG×CH=, ∵S△DEG=, ∴S△ACG:S△DEG=. 22(2017浙江台州).如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径. (1)求证:△APE是等腰直角三角形; (2)若⊙O的直径为2,求PC2+PB2的值. 【考点】MA:三角形的外接圆与外心;KW:等腰直角三角形. 【分析】(1)只要证明∠AEP=∠ABP=45°,∠PAB=90°即可解决问题; (2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,可得PM=AN,由△PCM,△PNB都是等腰直角三角形,推出PC=PM,PB=PN,可得PC2+PB2=2(PM2+PN2)=2(AN2+PN2)=2PA2=PE2=22=4; 【解答】(1)证明:∵AB=AC,∠BAC=90°, ∴∠C=∠ABC=45°, ∴∠AEP=∠ABP=45°, ∵PE是直径, ∴∠PAB=90°, ∴∠APE=∠AEP=45°, ∴AP=AE, ∴△PAE是等腰直角三角形. (2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形, ∴PM=AN, ∵△PCM,△PNB都是等腰直角三角形, ∴PC=PM,PB=PN, ∴PC2+PB2=2(PM2+PN2)=2(AN2+PN2)=2PA2=PE2=22=4. 23(2017浙江杭州).如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ, (1)点点同学通过画图和测量得到以下近似数据: ɑ 30° 40° 50° 60° β 120° 130° 140° 150° γ 150° 140° 130° 120° 猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明: (2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长. 【分析】(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°; (2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r; 【解答】解:(1)猜想:β=α+90°,γ=﹣α+180° 连接OB, ∴由圆周角定理可知:2∠BCA=360°﹣∠BOA, ∵OB=OA, ∴∠OBA=∠OAB=α, ∴∠BOA=180°﹣2α, ∴2β=360°﹣(180°﹣2α), ∴β=α+90°, ∵D是BC的中点,DE⊥BC, ∴OE是线段BC的垂直平分线, ∴BE=CE,∠BED=∠CED,∠EDC=90° ∵∠BCA=∠EDC+∠CED, ∴β=90°+∠CED, ∴∠CED=α, ∴∠CED=∠OBA=α, ∴O、A、E、B四点共圆, ∴∠EBO+∠EAG=180°, ∴∠EBA+∠OBA+∠EAG=180°, ∴γ+α=180°; (2)当γ=135°时,此时图形如图所示, ∴α=45°,β=135°, ∴∠BOA=90°,∠BCE=45°, 由(1)可知:O、A、E、B四点共圆, ∴∠BEC=90°, ∵△ABE的面积为△ABC的面积的4倍, ∴, ∴, 设CE=3x,AC=x, 由(1)可知:BC=2CD=6, ∵∠BCE=45°, ∴CE=BE=3x, ∴由勾股定理可知:(3x)2+(3x)2=62, x=, ∴BE=CE=3,AC=, ∴AE=AC+CE=4, 在Rt△ABE中, 由勾股定理可知:AB2=(3)2+(4)2, ∴AB=5, ∵∠BAO=45°, ∴∠AOB=90°, 在Rt△AOB中,设半径为r, 由勾股定理可知:AB2=2r2, ∴r=5, ∴⊙O半径的长为5. 【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识. 26、(2017•宁波)有两个内角分别是它们对角的一半的四边形叫做半对角四边形. (1)如图1,在半对角四边形ABCD中,∠B= ∠D, ∠C= ∠A,求∠B与∠C的度数之和; (1) 如图2,锐角△ABC内接于⊙O,若边AB上存在一点D, (2) 使得BD=BO.∠OBA的平分线交OA于点E,连结DE (3) 并延长交AC于点F,∠AFE=2∠EAF. (4) (5) 求证:四边形DBCF是半对角四边形; (3)如图3,在(2)的条件下,过点D作DG⊥OB于点H, 交BC于点G.当DH=BG时,求△BGH与△ABC的面积之比. (1)解:在半对角四边形ABCD中,∠B=∠D,∠C=∠A. ∵∠A+∠B+∠C+∠D=360°, ∴3∠B+3∠C=360°. ∴∠B+∠C=120°. 即∠B与∠C的度数之和120°. (2)证明:在△BED和△BEO中, . ∴△BED≌△BEO(SAS). ∴∠BDE=∠BOE. 又∵∠BCF=∠BOE. ∴∠BCF=∠BDE. 如下图,连结OC. 设∠EAF=.则∠AFE=2∠EAF=2. ∴∠EFC=180°-∠AFE=180°-2. ∵OA=OC, ∴∠OAC=∠OCA=. ∴∠AOC=180°-∠OAC-∠OCA=180°-2. ∴∠ABC=∠AOC=∠EFC. ∴四边形DBCF是半对角四边形. (3)解:如下图,作过点OM⊥BC于点M. ∵四边形DBCF是半对角四边形, ∴∠ABC+∠ACB=120°. ∴∠BAC=60°. ∴∠BOC=2∠BAC=120°. ∵OB=OC ∴∠OBC=∠OCB=30°. ∴BC=2BM=BO=BD. ∵DG⊥OB, ∴∠HGB=∠BAC=60°. ∵∠DBG=∠CBA, ∴△DBG△CBA. ∴=2=. ∵DH=BG,BG=2HG. ∴DG=3HG. ∴= ∴=. 【考点】三角形内角和定理,全等三角形的判定与性质,等腰三角形的性质,含30度角的直角三角形,相似三角形的判定与性质 【解析】【分析】(1)在半对角四边形ABCD中,∠B=∠D,∠C=∠A;根据四边形的内角和为360°,得出∠B与∠C的度数之和. (2)如图连接OC,根据条件先证△BED≌△BEO,再根据全等三角形的性质得出∠BCF=∠BOE=∠BDE;设∠EAF=.则∠AFE=2∠EAF=2得出∠EFC=180°-∠AFE=180°-2;再根据OA=OC得出∠OAC=∠OCA=, 根据三角形内角和得出∠AOC=180°-∠OAC-∠OCA=180°-2;从而得证. (3)如下图,作过点OM⊥BC于点M,由四边形DBCF是半对角四边形,得出∠ABC+∠ACB=120°,∠BAC=60°.∠BOC=2∠BAC=120°;再由OB=OC,得出∠OBC=∠OCB=30°.BC=2BM=BO=BD;根据△DBG~△CBA得出答案. 22、(2017·金华)(本题10分) 如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC. (1)求证:AC平分∠DAO. (2)若∠DAO=105°,∠E=30°. ①求∠OCE的度数. ②若⊙O的半径为2 ,求线段EF的长. (1)解:∵直线与⊙O相切, ∴OC⊥CD; 又∵AD⊥CD, ∴AD//OC, ∴∠DAC=∠OCA; 又∵OC=OA, ∴∠OAC=∠OCA, ∴∠DAC=∠OAC; ∴AC平分∠DAO. (2)解:①∵AD//OC,∠DAO=105°, ∴∠EOC=∠DAO=105°; ∵∠E=30°, ∴∠OCE=45°. ②作OG⊥CE于点G,可得FG=CG, ∵OC=2,∠OCE=45°. ∴CG=OG=2, ∴FG=2; ∵在RT△OGE中,∠E=30°, ∴GE=2, ∴EF=GE-FG=2-2. 【考点】平行线的判定与性质,三角形内角和定理,角平分线的性质,等腰三角形的性质,切线的性质 【解析】【分析】(1)利用了切线的性质,平行线的判定和性质,等边对等角,角平分线的判定即可得证。 (2)①根据(1)得出的AD//OC,从而得出同位角相等,再利用三角形的内角和定理即可求出答案;②作OG⊥CE于点G,可得FG=CG,根据等边对等角得出CG=OG=FG=2,在根据勾股定理得出GE,从而求出EF=GE-FG. 19(2017浙江衢州).如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9. (1)求证:△COD∽△CBE. (2)求半圆O的半径r的长. 【考点】S9:相似三角形的判定与性质;MC:切线的性质. 【分析】(1)由切线的性质和垂直的定义得出∠E=90°=∠CDO,再由∠C=∠C,得出△COD∽△CBE. (2)由勾股定理求出BC==15,由相似三角形的性质得出比例式,即可得出答案. 【解答】(1)证明:∵CD切半圆O于点D, ∴CD⊥OD, ∴∠CDO=90°, ∵BE⊥CD, ∴∠E=90°=∠CDO, 又∵∠C=∠C, ∴△COD∽△CBE. (2)解:在Rt△BEC中,CE=12,BE=9, ∴BC==15, ∵△COD∽△CBE. ∴,即, 解得:r=.查看更多