- 2021-05-13 发布 |
- 37.5 KB |
- 12页
![](https://data.61taotao.com/file-convert/2020/10/20/10/22/9e744ad72865c64b9e0ff53d73ba5637/img/1.jpg)
![](https://data.61taotao.com/file-convert/2020/10/20/10/22/9e744ad72865c64b9e0ff53d73ba5637/img/2.jpg)
![](https://data.61taotao.com/file-convert/2020/10/20/10/22/9e744ad72865c64b9e0ff53d73ba5637/img/3.jpg)
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
广州市番禺区中考数学一模试题含答案
2015年番禺区九年级数学综合训练试题(一) 第一部分 选择题(共30分) 一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中 只有一项是符合题目要求的.) 1. 下列计算正确的是(※). (A) (B) (C) (D) 2.二元一次方程组的解是(※ ) (A) (B) (C) (D) 3.如图的立体图形的左视图可能是(※). 第3题 (A) (B) (C) (D) 4.已知,两数在数轴上对应的点如右图所示,下列结论中正确的是(※). 0 第4题 (A) (B) (C) (D) 5.某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩与方差如右表所示.如果要选择一个成绩高 且发挥稳定的人参赛,则这个人应是(※). (A)甲 (B)乙 C)丙 (D)丁 6.下列图形可以由一个图形经过平移变换得到的是(※). (A) (B) (C) (D) 第8题 7.据报道, 2014年6月,恒大集团与阿里巴巴集团实施战略合作,阿里巴巴注资12亿元入股广州恒大.将数据1200000000用科学记数法表示为(※). (A) (B) (C) (D) 8. 如图,⊙的半径为5,为⊙的弦,⊥于点. 若, 则的长为(※). (A)4 (B)6 (C)8 (D)10 9.甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红的概率为(※). A B C D 第10题 E (A) (B) (C) (D) 10.如图,在□ABCD中,已知AD=8, AB=6, DE平分 ∠ADC交BC边于点E,则BE等于(※). (A)cm (B) (C) (D) 第二部分 非选择题(共120分) 第14题图 二、填空题(本大题共6小题,每小题3分,满分18分.) 11.函数的自变量x的取值范围是 ※ . 12.若分式的值为0,则的值为 ※ . 13. 计算:+= ※ . 14.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD= ※ . 第16题 15.分解因式:= ※ . 16.如图,从一运输船的点A处观测海岸上高为41m的灯塔 BC(观测点A与灯塔底部C在一个水平面上),测得灯塔 顶部B的仰角为35°,则点A到灯塔BC的距离约为 ※ (精确到1). 三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 第18题 17.(本小题满分9分)解不等式组: 18.(本小题满分9分)如图,在△ABC中,AD是BC边上的中线, 分别过点C、B作射线AD的垂线段,垂足分别为E、F. 求证:BF=CE. 19.(本小题满分10分)某工厂原计划生产24000台空气净化器,由于雾霾天气的影响,空气净化器的需求量呈上升趋势,生产任务的数量增加了12000台.工厂在实际生产中,提高了生产效率,每天比原计划多生产100台,实际完成生产任务的天数是原计划天数的1.2倍.求原计划每天生产多少台空气净化器. 44℅ A D C B 28% 8% 人数(单位:人) 项目 10 A B C D 20 30 40 50 44 8 28 笫20题 20.(本小题满分10分)我区积极开展“体育大课间”活动,引导学生坚持体育锻炼.某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题: (1)求样本中最喜欢B项目的人数百分比 和其所在扇形图中的圆心角的度数; (2)请把条形统计图补充完整; (3)已知该校有1000人,请根据样本 估计全校最喜欢足球的人数是多少? O x y A B C 笫21题 21.(本小题满分12分)如图,在平面直角坐标系xOy中, 若点,是一次函数的图象和 反比例函数的图象的两个交点. (1)求反比例函数和一次函数的解析式; (2)求直线与轴的交点的坐标; (3)求点到直线的距离. 22.(本题满分12分) 已知:关于的一元二次方程: (为实数). (1)若方程有两个不相等的实数根,求的取值范围; (2)若是此方程的实数根,抛物线与轴交于、,抛物线的顶点为,求的面积. 第23题 23.(本小题满分12分)如图,中,,. (1)动手操作:利用尺规作以为直径的⊙, 并标出⊙与的交点,与的交点 (保留作图痕迹,不写作法). (2)综合应用:在你所作的圆中,求证:; (3)求的周长. 24.(本小题满分14分)如本题图①,在△ABC中,已知. 过点A作BC的平行线与∠ABC的平分线交于点D,连接CD. (1)求的大小; 第24题图① 第24题图② (2)在线段的延长线上取一点,以为角的一边作,另一边交BD 延长线于点E, 若(如本题图②所示), 试求的值(用含的代数式表示). 25.(本小题满分14分)如图,在平面直角坐标系中,抛物线过点(0,4)和(8,0), (t,0)是轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB.过点B作轴的垂线、过点A作轴的垂线,两直线相交于点D. (1) 求此抛物线的对称轴; (2) 当为何值时,点D落在抛物线上? B C P D E AA O y x M B C P D E AA O y x M (3) 是否存在,使得以A、B、D为顶点的三角形与△PEB相似?若存在,求此时的值;若不存在,请说明理由. 番禺区2015年九年级数学综合训练试题(一) 参考答案与评分说明 一、 选择题(本大题共10小题,每小题3分,满分30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C B A D B B D C A B 第二部分 非选择题(共120分) 二、填空题(本大题共6小题,每小题3分,满分18分) 11.;12.;13.0;14.;15.;16. . 三、解答题(本大题共9小题,满分102分) 17.(本小题满分9分) 17.解:解①得: ; ……… 3分 解②得: ……… 4分 ; ; . ……… 6分 ∴不等式组的解集是:. ……… 9分 18.(本小题满分9分) 18. 证明:在△BFD和△CED中, ∵CE⊥AF,FB⊥AF, ∴∠DEC =∠DFB=90° ……… 2分 又∵AD为BC边上的中线,∴BD=CD ………… 4分 又∵∠EDC =∠FDB ……… 6分 ∴△BFD≌△CED ………7分 ∴BF=CE. ……… 9分 19.(本小题满分10分) 19.解:设原计划每天生产空气净化器台(…1分),则原计划天完成.……3分 依题意得:. ………… 5分 解得. ………… 7分 经检验,是原方程的解,并且符合题意. ………… 8分 答: 原计划每天生产空气净化器400台. ………… 10分 人数(单位:人) 项目 10 A B C D 20 30 40 50 44 8 28 20 20.(本小题满分10分) 20. 解:(1)20%,72°; ………… 4分 (2)如图; ………… 7分 (3)2000×28%=560人.… 10分 21.(本小题满分12分) 21.解:(1)∵点在函数的图象上, O x y A B C D ∴, ………… 1分 得:. 反比例函数的解析式为. ………… 2分 点在函数的图象上, ∴得:.∴. ………… 3分 经过、, ∴解得: ………… 5分 一次函数的解析式为. ………… 6分 (2)在一次函数的解析式中,令得. 点的坐标为. ………… 8分 (3)设点到直线的距离为直线与轴相交于,则.………… 9分 则:. ………… 10分 ………… 11分 点到直线的距离为. ………… 12分 22.(本题满分12分) 22.解:(1)此方程的判别式△= ………… 3分 ∵方程有两个不相等的实数根, ∴. ………… 4分 ∵, ∴的取值范围是. ………… 5分 (2)是此方程的实数根,, …………6分 解此方程得:. ………… 7分 ∴抛物线为, …………8分 化顶点式:, 顶点 …………10分 令, 得:, . 得, ………… 11分 . ………… 12分 23.(本题满分12分) 解:(1)如图1,⊙O为所求. ………… 3分 〖作出中垂线1分,画出圆1分, 作图痕迹1分(只要出现其中一组相交弧即可),没写结论不扣分〗 (2)①方法1 证明:如图,连接AE, ………… 4分 ∵AC为⊙O的直径,点E在⊙O上,∴∠AEC=90°, ∵AB=AC,∴∠BAE =∠CAE, ………… 5分 ∴. ………… 6分 方法2 证明:连接OD,OE, ………… 4分 则OE//AB,∠COE=∠BAC, ∠DOE=∠ADO 又 AO=DO 所以∠BAC=∠ADO 所以 ∠COE=∠DOE ……… 5分 ∴. ………… 6分 (3)解:如图3,在Rt△ACE中, ,, ∴. ………… 7分 ∵AB= AC,∠AEC=90°, ∴∠B =∠ACB,BE= CE=4. ………… 8分 又,∴DE= CE=4. ………… 9分 在Rt△BCD中,, ………… 10分 ∵,BC=8, ∴, …………11分 ∴的周长. …………12分 24.(本题满分14分) 24.解:(1) ∵,平分, 2 3 1 ∴,. ………… 1分 ∵∥,∴, ∴.∴. ………… 2分 ∴. . ………… 3分 又 ∵∥, , ………… 4分 …………5分 (2)①证明:过作于点, 2 3 1 则. …………6分 . ∵∥, …………7分 即:, 由, 得:. . …………9分 .又, ∴△∽△. …………11分 ∵,, , …………12分 ∵∥, ∴. …………13分 . …………14分 〖(2)问给分点建议:构造RT△辅助线1分;,1分;证,3分;证相似2分;得结论2分〗 25.(本题满分14分) 解:(1)由题得,,解得.…2分 抛物线的解析式为:,它的对称轴为: ………3分 (2)由题意得:,. 是绕点P顺时针旋转90°而得,,. 从而有. ………4分 假设在抛物线上,有, ………5分 解得 B C P D E AA O y x M ∵,即当时,点D落在抛物线上. ………7分 (3)①当时,如图, ,………8分 (1)若△∽△ADB, 此时,有: , ,即, 化简得,此时无解。 ………10分 (2)若△∽△ADB, 此时,有: , ,即,化简得:, 关于的一元二次方程的判别式, 由求根公式得: ,。 ………12分 ②当时,如图②,若△POA∽△ADB (1)若△∽△ADB, 此时,有: , ,即, 化简得, 解得(负根舍去)。 ………13分 (2)若△∽△ADB,同理得此时无解。 综合上述:当、时,以A、B、D为顶点的三角形与 △PEB相似。 ………14分 第25题图②查看更多