参数问题至中考

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

参数问题至中考

一、 参数问题 1. ‎(2008厦门)已知:抛物线经过点.‎ ‎(1)求的值;‎ ‎(2)若,求这条抛物线的顶点坐标;‎ ‎(3)若,过点作直线轴,交轴于点,交抛物线于另一点,且,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)‎ 2. ‎(2009厦门)已知二次函数y=x2-x+c.‎ ‎(1)若点A(-1,n)、B(2,2n-1)在二次函数y=x2-x+c的图象上,求此二次函数的最小值;‎ ‎(2)若点D(x1,y1)、E(x2,y2)、P(m,m)(m>0)在二次函数y=x2-x+c的图象上,且D、E两点关于坐标原点成中心对称,连接OP.当2≤OP≤2+时,试判断直线DE与抛物线y=x2-x+c+的交点个数,并说明理由.‎ 3. ‎(2010厦门)在平面直角坐标系中,点是坐标原点,点 。连结,将线段绕点按逆时针方向旋转90°得到线段,且点是抛物线的顶点 ‎(1)若,抛物线经过点(2,2),当时,求的取值范围;‎ ‎(2)已知点(1,0),若抛物线与轴交于点,直线 与抛物线有且只有一个交点,请判断的形状,并说明理由 4. ‎(2011•厦门有一定难度 考点:二次函数综合题。分类讨论 点评:本题考查了二次函数的应用,解题的关键是正确的用字母表示出点的坐标,并利用题目的已知条件得到有关的方程或不等式,从而求得未知数的值或取值范围.‎ )已知抛物线y=﹣x2+2mx﹣m2+2的顶点A在第一象限,过点A作AB⊥y轴于点B,C是线段AB上一点(不与点A、B重合),过点C作CD⊥x轴于点D并交抛物线于点P.‎ ‎(1)若点C(1,a)是线段AB的中点,求点P的坐标;‎ ‎(2)若直线AP交y轴的正半轴于点E,且AC=CP,求△OEP的面积S的取值范围.‎ 5. ‎(2011•孝感 考点:二次函数综合题。‎ 点评:此题主要考查了二次函数的综合应用以及相似三角形的判定与性质,二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合以及分类讨论思想是这部分考查的重点也是难点同学们应重点掌握.‎ )如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.‎ ‎(1)求点E、F的坐标(用含m的式子表示);‎ ‎(2)连接OA,若△OAF是等腰三角形,求m的值;‎ ‎(3)如图(2),设抛物线y=a(x﹣m﹣6)2+h经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.‎ 6. 如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.‎ ‎(1)求经过O、A、B三点的抛物线解析式;‎ ‎(2)求S与t的函数关系式;‎ ‎(3)将△OPQ绕着点P顺时针旋转,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.‎ ‎2‎ O A B C x y ‎1‎ ‎1‎ ‎3‎ P Q 1. ‎(2011•宜宾有一定难度 考点:二次函数综合题。多参数综合运算 专题:代数几何综合题。‎ 点评:此题主要考查了二次函数的综合应用以及勾股定理的应用,二次函数的综合应用是初中阶段的重点题型,特别注意利用数形结合是这部分考查的重点,也是难点,同学们应重点掌握.‎ )已知抛物线的顶点是C(0,a)(a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.‎ ‎(1)求含有常数a的抛物线的解析式;‎ ‎(2)设点P是抛物线上任意一点,过P作PH丄x轴.垂足是H,求证:PD=PH;‎ ‎(3)设过原点O的直线l与抛物线在笫一象限相交于A、B两点,若DA=2DB.且S△ABD=4.求a的值.‎
查看更多

相关文章

您可能关注的文档