全国各地中考数学真题分类汇编:第39章规律与探索(含答案)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

全国各地中考数学真题分类汇编:第39章规律与探索(含答案)

‎2011年全国各地100份中考数学试卷分类汇编 第39章 猜想、规律与探索 一 选择题 ‎1. (2011浙江省,10,3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A2比图A1多出2个“树枝”, 图A3比图A2多出4个“树枝”, 图A4比图A3多出8个“树枝”,……,照此规律,图A6比图A2多出“树枝”( )‎ ‎ A.28 B.56 C.60 D. 124‎ ‎ ‎ ‎【答案】C ‎3. (2011广东肇庆,15,3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第(是大于0的整数)个图形需要黑色棋子的个数是 ▲ .‎ ‎【答案】‎ ‎4. (2011内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)‎ 第1个图形 第 2 个图形 第3个图形 第 4 个图形 第 18题图 ‎【答案】或 ‎5. (2011湖南益阳,16,8分)观察下列算式:‎ ‎① 1 × 3 - 22 = 3 - 4 = -1 ‎ ‎② 2 × 4 - 32 = 8 - 9 = -1‎ ‎③ 3 × 5 - 42 = 15 - 16 = -1 ‎ ‎④ ‎ ‎……‎ ‎(1)请你按以上规律写出第4个算式;‎ ‎(2)把这个规律用含字母的式子表示出来;‎ ‎(3)你认为(2)中所写出的式子一定成立吗?并说明理由.‎ ‎【答案】解:⑴; ‎ ‎⑵答案不唯一.如; ‎ ‎ ⑶ ‎ ‎.‎ ‎6.(2011广东汕头,20,9分)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.‎ ‎(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;‎ ‎(2)用含n的代数式表示:第n行的第一个数是 ,最后一个数是 ,第n行共有 个数;‎ ‎(3)求第n行各数之和.‎ ‎【解】(1)64,8,15;‎ ‎ (2),,;‎ ‎ (3)第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n行各数之和等于=.‎ 二 填空题 ‎1. (2011四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个。‎ ‎【答案】15‎ ‎2. (2011广东东莞,10,4分)如图(1) ,将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△1D1E1F1各边中点,连接成正六角星形 A2F2B2D2C2E 2F 2,如图(3) 中阴影部分;如此下去…,则正六角星形AnFnBnDnCnE nF n的面积为 .‎ ‎【答案】‎ ‎3. (2011湖南常德,8,3分)先找规律,再填数:‎ ‎【答案】‎ ‎4. (2011广东湛江20,4分)已知:,‎ ‎,观察前面的计算过程,寻找计算规律计算 (直接写出计算结果),并比较 (填“”或“”或“=”)‎ ‎【答案】‎ 三 解答题 ‎1. (2011山东济宁,18,6分)观察下面的变形规律:‎ ‎ =1-; =-;=-;……‎ 解答下面的问题:‎ ‎(1)若n为正整数,请你猜想= ;‎ ‎(2)证明你猜想的结论;‎ ‎(3)求和:+++…+ .‎ ‎【答案】(1) 1分 ‎(2)证明:-=-==. 3分 ‎(3)原式=1-+-+-+…+-‎ ‎ =. ………………5分 ‎2. (2011湖南邵阳,23,8分)数学课堂上,徐老师出示了一道试题:‎ 如图(十)所示,在正三角形ABC中,M是BC边(不含端点B,C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN。‎ ‎(1)经过思考,小明展示了一种正确的证明过程,请你将证明过程补充完整。‎ 证明:在AB上截取EA=MC,连结EM,得△AEM。‎ ‎∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB -∠B,∠AMN=∠B=60°,[来源:Zxxk.Com]‎ ‎∴∠1=∠2.‎ 又∵CN、平分∠ACP,∴∠4=∠ACP=60°。‎ ‎∴∠MCN=∠3+∠4=120°。………………①‎ 又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM。‎ ‎∴△BEM为等边三角形,∴∠6=60°。‎ ‎∴∠5=10°-∠6=120°。………………②‎ 由①②得∠MCN=∠5.‎ 在△AEM和△MCN中,‎ ‎∵__________,____________,___________,‎ ‎∴△AEM≌△MCN(ASA)。‎ ‎∴AM=MN.‎ ‎(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1是否还成立?(直接给出答案,不需要证明)‎ ‎(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=______°时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)‎ ‎【答案】解:(1)∠5=∠MCN,AE=MC,∠2=∠1;‎ ‎(2)结论成立;‎ ‎(3)。‎ ‎3. (2011四川成都,23,4分)设,,,…, ‎ 设,则S=_________ (用含n的代数式表示,其中n为正整数).‎ ‎【答案】.‎ ‎==‎ ‎=‎ ‎∴S=+++…+.‎ 接下去利用拆项法即可求和.‎ ‎4. (2011四川内江,加试5,12分)同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n2.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n—1)×n=n(n+1)(n—1)时,我们可以这样做:‎ ‎(1)观察并猜想:[来源:Z&xx&k.Com]‎ ‎12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2)‎ ‎12+22+32=(1+0)×1+(1+1)×2+(1+2)×3‎ ‎=1+0×1+2+1×2+3+2×3‎ ‎=(1+2+3)+(0×1+1×2+2×3)‎ ‎12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+ ‎ ‎=1+0×1+2+1×2+3+2×3+ ‎ ‎=(1+2+3+4)+( )‎ ‎……‎ ‎(2)归纳结论:‎ ‎12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+[1+(n—1)]n ‎=1+0×1+2+1×2+3+2×3+…+n+(n一1)×n ‎=( ) +[ ][来源:Zxxk.Com]‎ ‎= + ‎ ‎=× ‎ ‎(3)实践应用:‎ 通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是 .‎ ‎【答案】(1+3)×4‎ ‎4+3×4‎ ‎0×1+1×2+2×3+3×4‎ ‎1+2+3+…+n ‎0×1+1×2+2×3++…+(n-1)×n n(n+1)(n—1)‎ n(n+1)(2n+1)‎ ‎5. (2011广东东莞,20,9分)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.‎ ‎[来源:Zxxk.Com]‎ ‎(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;‎ ‎(2)用含n的代数式表示:第n行的第一个数是 ,最后一个数是 ,第n行共有 个数;‎ ‎(3)求第n行各数之和.‎ ‎【解】(1)64,8,15;‎ ‎ (2),,;‎ ‎ (3)第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n行各数之和等于=.‎ ‎6. (2011四川凉山州,19,6分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律。例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中的系数;第四行的四个数1,3,3,1,恰好对应着展开式中的系数等等。‎ ‎1‎ ‎1‎ ‎1‎ ‎2‎ ‎1‎ ‎1‎ ‎3‎ ‎3‎ ‎1‎ ‎1‎ ‎…………………………(a+b)1‎ ‎…………………………(a+b)2‎ ‎…………………………(a+b)3‎ ‎……………………‎ ‎(1)根据上面的规律,写出的展开式。‎ ‎(2)利用上面的规律计算:‎ ‎【答案】解:⑴ ‎ ‎ ⑵原式=‎ ‎ =‎ ‎ =1 ‎ ‎ 注:不用以上规律计算不给分.‎ ‎7. (2011四川凉山州,20,7分)如图,是平行四边形的对角线上的点,,请你猜想:线段与线段有怎样的关系?并对你的猜想加以证明。‎ B C D E F A ‎20题图 ‎【答案】猜想:。‎ ‎ 证明: ∵四边形ABCD是平行四边形 ‎ ‎ ∴,∥ ‎ ‎ ∴ ‎ ‎ 在和 ‎ ‎ ‎ ∴≌ ‎ ‎ ∴,‎ ‎ ∴∥‎ 即 。‎
查看更多

相关文章

您可能关注的文档