- 2021-05-13 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考截长补短专题
截长补短专题 1.已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且. (1)求证:BF=EF﹣ED; (2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数. 2. 如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF. (1)若EF⊥AF,AF=4,AB=6,求 AE的长. (2)若点F是CD的中点,求证:CE=BE﹣AD. 3.已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D作DF⊥BC于F. (1)若∠BEC=75°,FC=3,求梯形ABCD的周长. (2)求证:ED=BE+FC. 4.如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE; (2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD. 5. 如图,梯形ABCD中,AD∥BC,∠DCB=450,CD=2,BD⊥CD。过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连结EG、AF。(1)求EG的长;(2)求证:CF=AB+AF。 6. 如图,在正方形ABCD中,点E、F分别在BC、CD上移动,但A到EF的距离AH始终保持与AB长相等,问在E、F移动过程中: (1)∠EAF的大小是否有变化?请说明理由. (2)△ECF的周长是否有变化?请说明理由. 4. 如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥AE于F,直线PF分别交AB、CD于G、H, (1)求证: DH =AG+BE; (2)若BE=1,AB=3,求PE的长. 24.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC于G,BH⊥DC于H,CH=DH,点E在AB上,点F在BC上,并且EF∥DC. (1)若AD=3,CG=2,求CD; (2)若CF=AD+BF,求证:EF=CD. ] 如图1,菱形ABCD中,点E、F分别为AB、AD的中点,连接CE、CF. (1)求证:CE=CF; (2)如图2,若H为AB上一点,连接CH,使∠CHB=2∠ECB,求证:CH=AH+AB. 24. 如图,在直角三角形中,是斜边的中点,向外作正方形,正方形,连接; A C B D E F M N 24题图 (1)若°,求的度数; (2)求证: (沙坪坝区考前模拟6月)24. 已知:如图, 在正方形ABCD外取一点E,连接AE、BE、DE,DE交AB于F。⑴若点G为DF的中点,连接AG,∠AED=2∠DAG,AE=2,求DF的长;⑵若AE⊥AB,BE⊥DE,点F为AB的中点,求证:FG-EF=BE 24.如图,在矩形ABCD中,点M、N在线段AD上,,点E、F分别为线段CN、BC上的点,连接EF并延长,交MB的延长线于点G,EF=FG. (1)点K为线BM的中点,.若线段AK=2,MN=3,求矩形ABCD 的面积; (2)求证:MB=NE+BG. 24. 已知:如图,在矩形中,是对角线.点为矩形外一点且满足,.交于点,连接,过点作交于. (1)若,求矩形的面积; (2)若,求证:. 1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE; (2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD. 证明:(1)已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点, ∴AB=DC,∠BAE=∠CDE,AE=DE, ∴△BAE≌△CDE, ∴BE=CE; (2)延长CD和BE的延长线交于H, ∵BF⊥CD,∠HEC=90°, ∴∠EBF+∠H=∠ECH+∠H=90° ∴∠EBF=∠ECH, 又∠BEC=∠CEH=90°, BE=CE(已证), ∴△BEG≌△CEH, ∴EG=EH,BG=CH=DH+CD, ∵△BAE≌△CDE(已证), ∴∠AEB=∠GED, ∠HED=∠AEB, ∴∠GED=∠HED, 又EG=EH(已证),ED=ED, ∴△GED≌△HED, ∴DG=DH, ∴BG=DG+CD. 2、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且. (1)求证:BF=EF﹣ED; (2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数. 证明:∵FC=F′C,EC=EC,∠ECF'=∠BCF+∠DCE=∠ECF, ∴△FCE≌△F′CE, ∴EF′=EF=DF′+ED, ∴BF=EF﹣ED; (2)解:∵AB=BC,∠B=80°, ∴∠ACB=50°, 由(1)得∠FEC=∠DEC=70°, ∴∠ECB=70°, 而∠B=∠BCD=80°, ∴∠DCE=10°, ∴∠BCF=30°, ∴∠ACF=∠BCA﹣∠BCF=20°. 3. 如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF. (1)若EF⊥AF,AF=4,AB=6,求 AE的长. (2)若点F是CD的中点,求证:CE=BE﹣AD. 解:(1)作EM⊥AB,交AB于点M.∵AE=BE,EM⊥AB, ∴AM=BM=×6=3; ∵∠AME=∠MAF=∠AFE=90°, ∴四边形AMEF是矩形, ∴EF=AM=3; 在Rt△AFE中,AE==5; (2)延长AF、BC交于点N. ∵AD∥EN, ∴∠DAF=∠N; ∵∠AFD=∠NFC,DF=FC, ∴△ADF≌△NCF(AAS), ∴AD=CN; ∵∠B+∠N=90°,∠BAE+∠EAN=90°, 又AE=BE,∠B=∠BAE, ∴∠N=∠EAN,AE=EN, ∴BE=EN=EC+CN=EC+AD, ∴CE=BE﹣AD. 4. 27、已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D作DF⊥BC于F. (1)若∠BEC=75°,FC=3,求梯形ABCD的周长. (2)求证:ED=BE+FC. 解:(1)∵∠BEC=75°,∠ABC=90°, ∴∠ECB=15°, ∵∠ECD=45°, ∴∠DCF=60°, 在Rt△DFC中:∠DCF=60°,FC=3, ∴DF=3,DC=6, 由题得,四边形ABFD是矩形, ∴AB=DF=3, ∵AB=BC, ∴BC=3, ∴BF=BC﹣FC=3﹣3, ∴AD=DF=3﹣3, ∴C梯形ABCD=3×2+6+3﹣3=9+3, 答:梯形ABCD的周长是9+3. (2)过点C作CM垂直AD的延长线于M,再延长DM到N,使MN=BE, ∴CN=CE, 可证∠NCD=∠DCE,∵CD=CD, ∴△DEC≌△DNC, ∴ED=EN, ∴ED=BE+FC. 5. (1)解∵BD⊥CD,∠DCB=45°,∴∠DBC=∠DCB=45°, ∴CD=DB=2,∴CB==2, ∵CE⊥AB于E,点G为BC中点,∴EG=CB=. (2)证明:证法一:延长BA、CD交于点H,∵BD⊥CD,∴∠CDF=∠BDH=90°, ∴∠DBH+∠H=90°,∵CE⊥AB于E,∴∠DCF+∠H=90°, ∴∠DBH=∠DCF,又CD=BD,∠CDF=∠BDH,∴△CDF≌△BDH(ASA), DF=DH,CF=BH=BA+AH,∵AD∥BC,∴∠DBC=∠ADF=45°, ∠HDA=∠DCB=45°,∴∠ADF=∠HAD,又DF=DH,DA=DA, ∴△ADF≌△ADH(SAS),∴AF=AH, 又CF=BH=BA+AH,∴CF=AB+AF. 证法二:在线段DH上截取CH=BA,连结DH. ∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DCF+∠DFC=90°. 又∠EFB=∠DFC,∴∠EBF=∠DCF. 又BD=CD,BA=CH,∴△ABD≌△HCD. ∴AD=HD,∠ADB=∠HDC. 又AD∥BC,∴∠ADB=∠DBC=45°. ∴∠HDC=45°.∴∠HDB=∠BDC-∠HDC=45°. ∴∠ADB=∠HDB. 又AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF. ∴CF=CH+HF=AB+AF.查看更多