- 2021-05-13 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考二次函数专题复习
中考二次函数专题复习 知识点归纳: 一、二次函数概念: 1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数. 2. 二次函数的结构特征: ⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2. ⑵ 是常数,是二次项系数,是一次项系数,是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:的性质: a 的绝对值越大,抛物线的开口越小。 的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 轴 时,随的增大而减小;时,随的增大而增大;时,有最大值. 2. 的性质: 上加下减。 的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 轴 时,随的增大而减小;时,随的增大而增大;时,有最大值. 3. 的性质: 左加右减。 的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 X=h 时,随的增大而减小;时,随的增大而增大;时,有最大值. 4. 的性质: 的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 X=h 时,随的增大而减小;时,随的增大而增大;时,有最大值. 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴沿轴平移:向上(下)平移个单位,变成 (或) ⑵沿轴平移:向左(右)平移个单位,变成(或) 四、二次函数与的比较 从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中. 五、二次函数图象的画法 五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点. 六、二次函数的性质 1. 当时,抛物线开口向上,对称轴为,顶点坐标为. 当时,随的增大而减小;当时,随的增大而增大;当时,有最小值. 2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值. 七、二次函数解析式的表示方法 1. 一般式:(,,为常数,); 2. 顶点式:(,,为常数,); 3. 两根式:(,,是抛物线与轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数 二次函数中,作为二次项系数,显然. ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大; ⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大. 总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小. 2. 一次项系数 在二次项系数确定的前提下,决定了抛物线的对称轴. ⑴ 在的前提下, 当时,,即抛物线的对称轴在轴左侧; 当时,,即抛物线的对称轴就是轴; 当时,,即抛物线对称轴在轴的右侧. ⑵ 在的前提下,结论刚好与上述相反,即 当时,,即抛物线的对称轴在轴右侧; 当时,,即抛物线的对称轴就是轴; 当时,,即抛物线对称轴在轴的左侧. 总结起来,在确定的前提下,决定了抛物线对称轴的位置. 的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异” 总结: 3. 常数项 ⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正; ⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为; ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与 轴交点的纵坐标为负. 总结起来,决定了抛物线与轴交点的位置. 总之,只要都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定: 根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况: 1. 已知抛物线上三点的坐标,一般选用一般式; 2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; 3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式; 4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 2. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 3. 关于原点对称 关于原点对称后,得到的解析式是; 关于原点对称后,得到的解析式是; 4. 关于顶点对称(即:抛物线绕顶点旋转180°) 关于顶点对称后,得到的解析式是; 关于顶点对称后,得到的解析式是. 5. 关于点对称 关于点对称后,得到的解析式是 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 十、二次函数与一元二次方程: 1. 二次函数与一元二次方程的关系(二次函数与轴交点情况): 一元二次方程是二次函数当函数值时的特殊情况. 图象与轴的交点个数: ① 当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离. ② 当时,图象与轴只有一个交点; ③ 当时,图象与轴没有交点. 当时,图象落在轴的上方,无论为任何实数,都有; 当时,图象落在轴的下方,无论为任何实数,都有. 2. 抛物线的图象与轴一定相交,交点坐标为,; 3. 二次函数常用解题方法总结: ⑴ 求二次函数的图象与轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标. 抛物线与轴有两个交点 二次三项式的值可正、可零、可负 一元二次方程有两个不相等实根 抛物线与轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根 抛物线与轴无交点 二次三项式的值恒为正 一元二次方程无实数根. ⑸ 与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系 师生共同学习过程: 知识梳理: 练习: 1.抛物线的对称轴是( ) A. B. C. D. 2.要得到二次函数的图象,需将的图象( ). A.向左平移2个单位,再向下平移2个单位 B.向右平移2个单位,再向上平移2个单位 C.向左平移1个单位,再向上平移1个单位 D.向右平移1个单位,再向下平移1个单位 最新考题 1.(2009年四川省内江市)抛物线的顶点坐标是( ) A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3) 2.(2009年泸州)在平面直角坐标系中,将二次函数的图象向上平移2个单位,所得图象的解析式为 A. B. C. D. 知识点2:二次函数的图形与性质 例1:如图1所示,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴. 第(1)问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0,其中正确的结论的序号是 . 第(2)问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确的结论的序号是_______. 例2:抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点,(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x的增大而减小? 思路点拨:由已知点(0,3)代入y=-x2+(m-1)x+m即可求得m的值,即可知道二次函数解析式,并可画出图象,然后根据图象和二次函数性质可得(2)(3)(4). 解:(1)由题意将(0,3)代入解析式可得m=3, ∴ 抛物线为y=-x2+2x+3. 图象(图2): (2)令y=0,则-x2+2x+3=0,得x1=-1,x2=3; ∴ 抛物线与x轴的交点为(-1,0),(3,0). ∵ y=-x2+2x+3=-(x-1)2+4, ∴ 抛物线顶点坐标为(1,4); (3)由图象可知:当-1查看更多