- 2021-05-10 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
反比例函数在中考中的常见题型
中考数学复习教材回归知识讲解+例题解析+强化训练 反比例函数在中考中的常见题型 ◆知识讲解 1.反比例函数的图像是双曲线,故也称双曲线y=(k≠0). 2.反比例函数y=(k≠0)的性质 (1)当k>0时函数图像的两个分支分别在第一,三象限内在每一象限内,y随x的增大而减小. (2)当k<0时函数图像的两个分支分别在第二,四象限内在每一象限内,y随x的增大而增大. (3)在反比例函数y=中,其解析式变形为xy=k,故要求k的值,也就是求其图像上一点横坐标与纵坐标之积,通常将反比例函数图像上一点的坐标当作某一元二次方程的两根,运用两根之积求k的值. (4)若双曲线y=图像上一点(a,b)满足a,b是方程Z2-4Z-2=0的两根,求双曲线的解析式.由根与系数关系得ab=-2,又ab=k,∴k=-2,故双曲线的解析式是y=. (5)由于反比例函数中自变量x和函数y的值都不能为零,所以图像和x轴,y轴都没有交点,但画图时要体现出图像和坐标轴无限贴近的趋势. ◆例题解析 例1 如图,在直角坐标系中,O为原点,点A在第一象限,它的纵坐标是横坐标的3倍,反比例函数y=的图像经过点A, (1)求点A的坐标; (2)如果经过点A的一次函数图像与y轴的正半轴交于点B,且OB=AB,求这个一次函数的解析式. 【分析】(1)用含一个字母a的代数式表示点A的横坐标,纵坐标,把点A的坐标代入y=可求得a的值,从而得出点A的坐标. (2)设点B的坐标为(0,m),根据OB=AB,可列出关于m的一个不等式,从而求出点B的坐标,进而求出经过点A,B的直线的解析式. 【解答】(1)由题意,设点A的坐标为(a,3a),a>0. ∵点A在反比例函数y=的图像上,得3a=,解得a1=2,a2=-2,经检验a1=2,a2=-2是原方程的根,但a2=-2不符合题意,舍去. ∴点A的坐标为(2,6). (2)由题意,设点B的坐标为(0,m). ∵m>0,∴m=. 解得m=,经检验m=是原方程的根, ∴点B的坐标为(0,). 设一次函数的解析式为y=kx+. 由于这个一次函数图像过点A(2,6), ∴6=2k+,得k=. ∴所求一次函数的解析式为y=x+. 例2 如图,已知Rt△ABC的顶点A是一次函数y=x+m与反比例函数y=的图像在第一象限内的交点,且S△AOB=3. (1)该一次函数与反比例函数的解析式是否能完全确定?如能确定,请写出它们的解析式;如不能确定,请说明理由. (2)如果线段AC的延长线与反比例函数的图像的另一支交于D点,过D作DE⊥x轴于E,那么△ODE的面积与△AOB的面积的大小关系能否确定? (3)请判断△AOD为何特殊三角形,并证明你的结论. 【分析】△AOB是直角三角形,所以它的面积是两条直角边之积的,而反比例函数图像上任一点的横坐标,纵坐标之积就是反比例函数中的系数.由题意不难确定m,则所求一次函数,反比例函数的解析式就确定了. 由反比例函数的定义可知,过反比例函数图像上任一点作x轴,y轴的垂线,该点与两垂足及原点构成的矩形的面积都是大小相等的. 【解答】(1)设B(x,0),则A(x0,),其中0>0,m>0. 在Rt△ABO中,AB=,OB=x0. 则S△ABO =·x0·=3,即m=6. 所以一次函数的解析式为y=x+6;反比例函数的解析式为y=. (2)由得x2+6x-6=0, 解得x1=-3+,x2=-3-. ∴A(-3+,3+),D(-3-,3-). 由反比例函数的定义可知,对反比例函数图像上任意一点P(x,y),有 y=.即xy=6. ∴S△DEO =│xDyD│=3,即S△DEO =S△ABO. (3)由A(-3+,3+)和D(-3-,3-)可得AO=4,DO=4,即AO=DO. 由图可知∠AOD>90°,∴△AOD为钝角等腰三角形. 【点评】特殊三角形主要指边的关系和角的关系.通过对直观图形的观察,借助代数运算验证,便不难判断. ◆强化训练 一、填空题 1.如图1,直线y=kx(k>0)与双曲线y=交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1的值等于_______. 图1 图2 图3 2.(2006,重庆)如图2,矩形AOCB的两边OC,OA分别位于x轴,y轴上,点B的坐标为B(-,5),D是AB边上的一点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么该函数的解析式是______. 3.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为_______. 4.若y=中,y与x为反比例函数,则a=______.若图像经过第二象限内的某点,则a=______. 5.反比例函数y=的图像上有一点P(a,b),且a,b是方程t2-4t-2=0的两个根,则k=_______;点P到原点的距离OP=_______. 6.已知双曲线xy=1与直线y=-x+无交点,则b的取值范围是______. 7.反比例函数y=的图像经过点P(a,b),其中a,b是一元二次方程x2+kx+4=0的两个根,那么点P的坐标是_______. 8.两个反比例函数y=和y=在第一象限内的图像如图3所示,点P在y=的图像上,PC⊥x轴于点C,交y=的图像于点A,PD⊥y轴于点D,交y=的图像于点B,当点P在y=的图像上运动时,以下结论: ①△ODB与△OCA的面积相等; ②四边形PAOB的面积不会发生变化; ③PA与PB始终相等 ④当点A是PC的中点时,点B一定是PD的中点. 其中一定正确的是_______(把你认为正确结论的序号都填上,少填或错填不给分). 二、选择题 9.如图4所示,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB,AC分别平行于x轴,y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是( ) A.1查看更多