- 2021-05-10 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
上海初三中考数学第题专项复习
上海初三中考数学第23题(几何证明、计算题)专题复习 一、历年上海中考真题 2010:23.已知梯形ABCD中,AD∥BC,AB=AD(如图所示),∠BAD的平分线AE交BC于点E,连接DE. (1)在图中,用尺规作∠BAD的平分线AE(保留作图痕迹,不写作法),并证明四边形ABED是菱形; (2)∠ABC=60°,EC=2BE,求证:ED⊥DC. 2011:23.(本题满分12分,每小题满分各6分) 如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.联结BF、CD、AC. (1)求证:四边形ABFC是平行四边形; (2)如果DE2=BE·CE,求证四边形ABFC是矩形. 2012:23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分) 己知:如图,在菱形中,点、分别在边、,∠ =∠,与交于点. (1)求证: (2)当要=时,求证:四边形是平行四边形. 图8 2013:23.如图8,在△中,, ,点为边的中点,交于点,交的延长线于点. (1)求证:; (2)联结,过点作的垂线交的 延长线于点,求证:. 2014:22.(本题满分10分,每小题满分各5分) 如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH. (1)求sinB的值; (2)如果CD=,求BE的值. 23.(本题满分12分,每小题满分各6分) 已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD. 二、 历年金山区模拟考真题 (15一模)23.(本题满分12分)O A C P D O1 B 如图,已知⊙与⊙外离,与分别是⊙与⊙的半径,∥.直线交于点,交⊙于点,交⊙于点. 求证:(1)∥;(2) G F E D B A C 第23题图 H (15二模)23.(本题满分12分)已知:如图,在中中,,,点在边上,延长至点,使,延长交于,过点作//,交于点,在上取一点,使. (1)求证:; (2) 求证:四边形是正方形. [注:若要用、等,请不要标在此图,要标在答题纸的图形上] (09二模)23(本题满分10分)如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE = BC. D A B C (第23题图) E (1)求证:∠E =∠DBC; (2)若等腰梯形ABCD的中位线长为6,∠E =, 求等腰梯形ABCD的对角线的长。 三、2015年中考题型展望 上海中考数学试卷的出题风格在23题上相对固定,旨在考察学生对于几何问题证明或者计算基本图形之间的综合掌握。题目难度主要以中档层次题目为主,一般不存在找不到思路的情况。若熟练掌握基本几何知识点,就能以不变应万变解答出此类中考问题。 几何证明及计算 (1)特殊三角形的边、角计算(2)特殊三角形的边、角计算。(3)特殊三角形、特殊四边形的性质应用(4)三角形中位线(5)全等三角形、相似三角形的判定和性质应用(6)正多边形的对称性问题(7)圆的垂径定理,圆的切线判定及性质(8)图形运动问题(平移、旋转、翻折)(9)几何图形与锐角三角比结合证明或计算(10)几何图形与函数结合证明或计算 *相似三角形的性质的考察加大力度,主要考察学生的思维及能力解决。 全等三角形的判定: ①边角边公理(SAS) ②角边角公理(ASA) ③角角边定理(AAS) ④边边边公理(SSS)⑤斜边、直角边公理(HL) 等腰三角形的性质: ①等腰三角形的两个底角相等; ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一) 等腰三角形的判定:有两个角相等的三角形是等腰三角形; 直角三角形的性质: ①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半; ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理); ④直角三角形中角所对的直角边等于斜边的一半; 直角三角形的判定: ①有两个角互余的三角形是直角三角形; ②如果三角形的三边长a、b 、c有下面关系,那么这个三角形是直角三角形(勾股定理的逆定理)。 (4)四边形 多边形的内角和定理:n边形的内角和等于(n≥3,n是正整数); 平行四边形的性质: ①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分; 平行四边形的判定: ①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形; ③对角线互相平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。 矩形的性质:(除具有平行四边形所有性质外) ①矩形的四个角都是直角;②矩形的对角线相等; 矩形的判定:①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形; 菱形的特征:(除具有平行四边形所有性质外 ①菱形的四边相等;②菱形的对角线互相垂直平分,并且每一条对角线平分一组对角; 菱形的判定:四边相等的四边形是菱形; 正方形的特征: ①正方形的四边相等;②正方形的四个角都是直角; ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角; 正方形的判定: ①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。 等腰梯形的特征:①等腰梯形同一底边上的两个内角相等 ②等腰梯形的两条对角线相等。 等腰梯形的判定:①同一底边上的两个内角相等的梯形是等腰梯形;②两条对角线相等的梯形是等腰梯形。 圆点与圆的位置关系(设圆的半径为r,点P到圆心O的距离为d): ①点P在圆上,则d=r,反之也成立; ②点P在圆内,则d查看更多