- 2021-05-10 发布 |
- 37.5 KB |
- 28页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2017广东中考数学试题含答案解析
2016年广东省中考数学试卷 一、选择题(共10小题,每小题3分,满分30分) 1.(3分)﹣2的相反数是( ) A.2 B.﹣2 C. D.﹣ 2.(3分)如图所示,a与b的大小关系是( ) A.a<b B.a>b C.a=b D.b=2a 3.(3分)下列所述图形中,是中心对称图形的是( ) A.直角三角形 B.平行四边形 C.正五边形 D.正三角形 4.(3分)据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为( ) A.0.277×107 B.0.277×108 C.2.77×107 D.2.77×108 5.(3分)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为( ) A. B.2 C.+1 D.2+1 6.(3分)某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是( ) A.4000元 B.5000元 C.7000元 D.10000元 7.(3分)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(3分)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是( ) A. B. C. D. 9.(3分)已知方程x﹣2y+3=8,则整式x﹣2y的值为( ) A.5 B.10 C.12 D.15 10.(3分)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( ) A. B. C. D. 二、填空题(共6小题,每小题4分,满分24分) 11.(4分)9的算术平方根是 . 12.(4分)分解因式:m2﹣4= . 13.(4分)不等式组的解集是 . 14.(4分)如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是 cm(计算结果保留π). 15.(4分)如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= . 16.(4分)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA、PB、PC,若PA=a,则点A到PB和PC的距离之和AE+AF= . 三、解答题(共3小题,每小题6分,满分18分) 17.(6分)计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1. 18.(6分)先化简,再求值:•+,其中a=﹣1. 19.(6分)如图,已知△ABC中,D为AB的中点. (1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法); (2)在(1)的条件下,若DE=4,求BC的长. 四、解答题(共3小题,每小题7分,满分21分) 20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务. (1)求这个工程队原计划每天修建道路多少米? (2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几? 21.(7分)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长. 22.(7分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题: (1)这次活动一共调查了 名学生; (2)补全条形统计图; (3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于 度; (4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是 人. 五、解答题(共3小题,每小题9分,满分27分) 23.(9分)如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m ). (1)求k的值; (2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q( ); (3)若过P、Q二点的抛物线与y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程. 24.(9分)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F. (1)求证:△ACF∽△DAE; (2)若S△AOC=,求DE的长; (3)连接EF,求证:EF是⊙O的切线. 25.(9分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP. (1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形? (2)请判断OA、OP之间的数量关系和位置关系,并加以证明; (3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值. 2016年广东省中考数学试卷 参考答案与试题解析 一、选择题(共10小题,每小题3分,满分30分) 1.(3分)﹣2的相反数是( ) A.2 B.﹣2 C. D.﹣ 【分析】根据相反数的意义,只有符号不同的数为相反数. 【解答】解:根据相反数的定义,﹣2的相反数是2. 故选:A. 【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0. 2.(3分)如图所示,a与b的大小关系是( ) A.a<b B.a>b C.a=b D.b=2a 【分析】根据数轴判断出a,b与零的关系,即可. 【解答】根据数轴得到a<0,b>0, ∴b>a, 故选A 【点评】此题是有理数大小的比较,主要考查了识别数轴上的点表示的数,也是解本题的难点. 3.(3分)下列所述图形中,是中心对称图形的是( ) A.直角三角形 B.平行四边形 C.正五边形 D.正三角形 【分析】根据中心对称图形的定义对各选项分析判断即可得解. 【解答】解:A、直角三角形不是中心对称图形,故本选项错误; B、平行四边形是中心对称图形,故本选项正确; C、正五边形不是中心对称图形,故本选项错误; D、正三角形不是中心对称图形,故本选项错误. 故选B. 【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 4.(3分)据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为( ) A.0.277×107 B.0.277×108 C.2.77×107 D.2.77×108 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:将27700000用科学记数法表示为2.77×107, 故选C. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 5.(3分)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为( ) A. B.2 C.+1 D.2+1 【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长. 【解答】解:∵正方形ABCD的面积为1, ∴BC=CD==1,∠BCD=90°, ∵E、F分别是BC、CD的中点, ∴CE=BC=,CF=CD=, ∴CE=CF, ∴△CEF是等腰直角三角形, ∴EF=CE=, ∴正方形EFGH的周长=4EF=4×=2; 故选:B. 【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键. 6.(3分)某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是( ) A.4000元 B.5000元 C.7000元 D.10000元 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 【解答】解:从小到大排列此数据为:3000元,4000元,5000元,7000元,10000元, 5000元处在第3位为中位数, 故他们工资的中位数是5000元. 故选B. 【点评】本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数. 7.(3分)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【分析】根据各象限内点的坐标特征解答即可. 【解答】解:点P(﹣2,﹣3)所在的象限是第三象限. 故选C. 【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣) 8.(3分)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是( ) A. B. C. D. 【分析】利用勾股定理列式求出OA,再根据锐角的余弦等于邻边比斜边列式即可. 【解答】解:由勾股定理得OA==5, 所以cosα=. 故选D. 【点评】本题考查了锐角三角函数的定义,坐标与图形性质,勾股定理,熟记概念并准确识图求出OA的长度是解题的关键. 9.(3分)已知方程x﹣2y+3=8,则整式x﹣2y的值为( ) A.5 B.10 C.12 D.15 【分析】根据等式的性质1:等式两边同时加上﹣3,可得x﹣2y=5. 【解答】解:由x﹣2y+3=8得:x﹣2y=8﹣3=5, 故选A 【点评】本题考查了等式的性质,非常简单,属于基础题;熟练掌握等式的性质是本题的关键,也运用了整体的思想. 10.(3分)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( ) A. B. C. D. 【分析】分P在AB、BC、CD、AD上四种情况,表示出y与x的函数解析式,确定出大致图象即可. 【解答】解:设正方形的边长为a, 当P在AB边上运动时,y=ax; 当P在BC边上运动时,y=a(2a﹣x)=﹣ax+a2; 当P在CD边上运动时,y=a(x﹣2a)=ax﹣a2; 当P在AD边上运动时,y=a(4a﹣x)=﹣ax﹣2a2, 大致图象为: 故选C. 【点评】此题考查了动点问题的函数图象,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程. 二、填空题(共6小题,每小题4分,满分24分) 11.(4分)9的算术平方根是 3 . 【分析】9的平方根为±3,算术平方根为非负,从而得出结论. 【解答】解:∵(±3)2=9, ∴9的算术平方根是|±3|=3. 故答案为:3. 【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负. 12.(4分)分解因式:m2﹣4= (m+2)(m﹣2) . 【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b). 【解答】解:m2﹣4=(m+2)(m﹣2). 故答案为:(m+2)(m﹣2). 【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反. 13.(4分)不等式组的解集是 ﹣3<x≤1 . 【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集. 【解答】解:, 解①得x≤1, 解②得x>﹣3, 所以不等式组的解集为﹣3<x≤1. 故答案为﹣3<x≤1. 【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到. 14.(4分)如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是 10π cm(计算结果保留π). 【分析】根据的长就是圆锥的底面周长即可求解. 【解答】解:∵圆锥的高h为12cm,OA=13cm, ∴圆锥的底面半径为=5cm, ∴圆锥的底面周长为10πcm, ∴扇形AOC中的长是10πcm, 故答案为:10π. 【点评】本题考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于展开扇形的弧长,难度不大. 15.(4分)如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= . 【分析】先根据折叠得出BE=B′E,且∠AB′E=∠B=90°,可知△EB′C是直角三角形,由已知的BC=3BE得EC=2B′E,得出∠ACB=30°,从而得出AC与AB的关系,求出AB的长. 【解答】解:由折叠得:BE=B′E,∠AB′E=∠B=90°, ∴∠EB′C=90°, ∵BC=3BE, ∴EC=2BE=2B′E, ∴∠ACB=30°, 在Rt△ABC中,AC=2AB, ∴AB=AC=×2=, 故答案为:. 【点评】本题考查了矩形的性质和翻折问题,明确翻折前后的图形全等是本题的关键,同时还运用了直角三角形中如果一条直角边是斜边的一半,那么这条直角边所对的锐角是30°这一结论,是常考题型. 16.(4分)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA、PB、PC,若PA=a,则点A到PB和PC的距离之和AE+AF= a . 【分析】如图,连接OB、OC.首先证明∠AOB=∠BOC=∠COD=60°,推出∠APB= ∠AOB=30°,∠APC=∠AOC=60°,根据AE=AP•sin30°,AF=AP•sin60°,即可解决问题. 【解答】解:如图,连接OB、OC. ∵AD是直径,AB=BC=CD, ∴==, ∴∠AOB=∠BOC=∠COD=60°, ∴∠APB=∠AOB=30°,∠APC=∠AOC=60°, 在Rt△APE中,∵∠AEP=90°(AE是A到PB的距离,AE⊥PB), ∴AE=AP•sin30°=a, 在Rt△APF中,∵∠AFP=90°, ∴AF=AP•sin60°=a, ∴AE+AF=a. 故答案为a. 【点评】本题考查圆周角定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用直角三角形解决问题,属于中考常考题型. 三、解答题(共3小题,每小题6分,满分18分) 17.(6分)计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1. 【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1的值是多少即可. 【解答】解:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1 =3﹣1+2 =2+2 =4. 【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用. (2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1. (3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值. (4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数. 18.(6分)先化简,再求值:•+,其中a=﹣1. 【分析】原式第一项约分后两项通分并利用同分母分式的加法法则计算,得到最简结果,把a的值代入计算即可求出值. 【解答】解:原式=•+=+==, 当a=﹣1时,原式===+1. 【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 19.(6分)如图,已知△ABC中,D为AB的中点. (1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法); (2)在(1)的条件下,若DE=4,求BC的长. 【分析】(1)作线段AC的垂直平分线即可. (2)根据三角形中位线定理即可解决. 【解答】解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点. (2)∵AD=DB,AE=EC, ∴DE∥BC,DE=BC, ∵DE=4, ∴BC=8. 【点评】本题考查基本作图、三角形中位线定理等知识,解题的关键是掌握线段垂直平分线的作法,记住三角形的中位线定理,属于中考常考题型. 四、解答题(共3小题,每小题7分,满分21分) 20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务. (1)求这个工程队原计划每天修建道路多少米? (2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几? 【分析】(1)设原计划每天修建道路x米,则实际每天修建道路1.5x米,根据题意,列方程解答即可; (2)由(1)的结论列出方程解答即可. 【解答】解:(1)设原计划每天修建道路x米, 可得:, 解得:x=100, 经检验x=100是原方程的解, 答:原计划每天修建道路100米; (2)设实际平均每天修建道路的工效比原计划增加y%, 可得:, 解得:y=20, 经检验y=20是原方程的解, 答:实际平均每天修建道路的工效比原计划增加百分之二十. 【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 21.(7分)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长. 【分析】本题介绍两种方法: ①在Rt△ACD中,利用30度角的性质和勾股定理求CD的长;同理在Rt△ECD中求FC的长,在Rt△FCG中求CH的长;最后在Rt△HCI中,利用30度角的性质和勾股定理求CI的长. ②在Rt△DCA中,利用30°角的余弦求CD,同理依次求CF、CH、CP,最后利用正弦求CI的长. 【解答】解:解法一:在Rt△ACB中,∠B=30°,∠ACB=90°, ∴∠A=90°﹣30°=60°, ∵CD⊥AB, ∴∠ADC=90°, ∴∠ACD=30°, 在Rt△ACD中,AC=a, ∴AD=a, 由勾股定理得:CD==, 同理得:FC=×=,CH=×=, 在Rt△HCI中,∠I=30°, ∴HI=2HC=, 由勾股定理得:CI==, 解法二:∠DCA=∠B=30°, 在Rt△DCA中,cos30°=, ∴CD=AC•cos30°=a, 在Rt△CDF中,cos30°=, CF=×a=a, 同理得:CH=cos30°CF=×a=a, 在Rt△HCI中,∠HIC=30°, tan30°=, CI=a÷=a; 答:CI的长为. 【点评】本题考查了勾股定理和直角三角形含30°角的性质,在直角三角形中,30°角所对的直角边等于斜边的一半,这一性质经常运用,必须熟练掌握;同时在运用勾股定理和直角三角形含30°角的性质时,一定要书写好所在的直角三角形,尤其是此题多次运用了这一性质,此题也可以利用三角函数解决. 22.(7分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题: (1)这次活动一共调查了 250 名学生; (2)补全条形统计图; (3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于 108 度; (4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是 480 人. 【分析】(1)由“足球”人数及其百分比可得总人数; (2)根据各项目人数之和等于总人数求出“篮球”的人数,补全图形即可; (3)用“篮球”人数占被调查人数的比例乘以360°即可; (4)用总人数乘以样本中足球所占百分比即可得. 【解答】解:(1)这次活动一共调查学生:80÷32%=250(人); (2)选择“篮球”的人数为:250﹣80﹣40﹣55=75(人), 补全条形图如图: (3)选择篮球项目的人数所在扇形的圆心角为:×360°=108°; (4)估计该学校选择足球项目的学生人数约是:1500×32%=480(人); 故答案为:(1)250;(3)108;(4)480. 【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 五、解答题(共3小题,每小题9分,满分27分) 23.(9分)如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m ). (1)求k的值; (2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q( 2,1 ); (3)若过P、Q二点的抛物线与y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程. 【分析】(1)直接利用图象上点的坐标性质进而代入求出即可; (2)连接PO,QO,PQ,作PA⊥y轴于A,QB⊥x轴于B,于是得到PA=1,OA=2,根据点Q与点P关于直线y=x成轴对称,得到直线y=x垂直平分PQ,根据线段垂直平分线的性质得到OP=OQ,根据全等三角形的性质得到QB=PA=1,OB=OA=2,于是得到结论; (3)设抛物线的函数解析式为y=ax2+bx+c,把P、Q、N(0,)代入y=ax2+bx+c,解方程组即可得到结论. 【解答】解:(1)∵直线y=kx+1与双曲线y=(x>0)交于点A(1,m), ∴m=2, 把A(1,2)代入y=kx+1得:k+1=2, 解得:k=1; (2)连接PO,QO,PQ,作PA⊥y轴于A,QB⊥x轴于B,则PA=1,OA=2, ∵点Q与点P关于直线y=x成轴对称, ∴直线y=x垂直平分PQ, ∴OP=OQ, ∴∠POA=∠QOB, 在△OPA与△OQB中, , ∴△POA≌△QOB, ∴QB=PA=1,OB=OA=2, ∴Q(2,1); 故答案为:2,1; (3)设抛物线的函数解析式为y=ax2+bx+c, ∵过P、Q二点的抛物线与y轴的交点为N(0,), ∴, 解得:, ∴抛物线的函数解析式为y=﹣x2+x+, ∴对称轴方程x=﹣=. 【点评】本题考查了一次函数和反比例函数的交点问题,全等三角形的判定和性质,解题需把点的坐标代入函数解析式,灵活利用方程组求出所需字母的值,从而求出函数解析式,熟练掌握待定系数法求函数的解析式是解题的关键. 24.(9分)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F. (1)求证:△ACF∽△DAE; (2)若S△AOC=,求DE的长; (3)连接EF,求证:EF是⊙O的切线. 【分析】(1)根据圆周角定理得到∠BAC=90°,根据三角形的内角和得到∠ACB=60°根据切线的性质得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到结论; (2)根据S△AOC=,得到S△ACF=,通过△ACF∽△DAE,求得S△DAE=,过A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论; (3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,过O作OG⊥EF于G,根据全等三角形的性质得到OG=OA,即可得到结论. 【解答】(1)证明:∵BC是⊙O的直径, ∴∠BAC=90°, ∵∠ABC=30°, ∴∠ACB=60° ∵OA=OC, ∴∠AOC=60°, ∵AF是⊙O的切线, ∴∠OAF=90°, ∴∠AFC=30°, ∵DE是⊙O的切线, ∴∠DBC=90°, ∴∠D=∠AFC=30° ∴∠DAE=∠ACF=120°, ∴△ACF∽△DAE; (2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°, ∴∠CAF=30°, ∴∠CAF=∠AFC, ∴AC=CF ∴OC=CF, ∵S△AOC=, ∴S△ACF=, ∵∠ABC=∠AFC=30°, ∴AB=AF, ∵AB=BD, ∴AF=BD, ∴∠BAE=∠BEA=30°, ∴AB=BE=AF, ∴=, ∵△ACF∽△DAE, ∴=()2=, ∴S△DAE=, 过A作AH⊥DE于H, ∴AH=DH=DE, ∴S△ADE=DE•AH=וDE2=, ∴DE=; (3)∵∠EOF=∠AOB=120°, 在△AOF与△BOE中,, ∴△AOF≌△BEO, ∴OE=OF, ∴∠OFG=(180°﹣∠EOF)=30°, ∴∠AFO=∠GFO, 过O作OG⊥EF于G, ∴∠OAF=∠OGF=90°, 在△AOF与△OGF中,, ∴△AOF≌△GOF, ∴OG=OA, ∴EF是⊙O的切线. 【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,切线的判定和性质,圆周角定理,直角三角形的性质,证得△ACF∽△DAE是解题的关键. 25.(9分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP. (1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形? (2)请判断OA、OP之间的数量关系和位置关系,并加以证明; (3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值. 【分析】(1)根据平移的性质,可得PQ,根据一组对边平行且相等的四边形是平行四边形,可得答案; (2)根据正方形的性质,平移的性质,可得PQ与AB的关系,根据等腰直角三角形的判定与性质,可得∠PQO,根据全等三角形的判定与性质,可得AO与OP的数量关系,根据余角的性质,可得AO与OP的位置关系; (3)根据等腰直角三角形的性质,可得OE的长,根据三角形的面积公式,可得二次函数,根据二次函数的性质,可得到答案. 【解答】(1)四边形APQD为平行四边形; (2)OA=OP,OA⊥OP,理由如下: ∵四边形ABCD是正方形, ∴AB=BC=PQ,∠ABO=∠OBQ=45°, ∵OQ⊥BD, ∴∠PQO=45°, ∴∠ABO=∠OBQ=∠PQO=45°, ∴OB=OQ, 在△AOB和△OPQ中, ∴△AOB≌△POQ(SAS), ∴OA=OP,∠AOB=∠POQ, ∴∠AOP=∠BOQ=90°, ∴OA⊥OP; (3)如图,过O作OE⊥BC于E. ①如图1,当P点在B点右侧时, 则BQ=x+2,OE=, ∴y=וx,即y=(x+1)2﹣, 又∵0≤x≤2, ∴当x=2时,y有最大值为2; ②如图2,当P点在B点左侧时, 则BQ=2﹣x,OE=, ∴y=וx,即y=﹣(x﹣1)2+, 又∵0≤x≤2, ∴当x=1时,y有最大值为; 综上所述,∴当x=2时,y有最大值为2; 【点评】本题考查了二次函数综合题,利用平行四边形的判定是解题关键;利用全等三角形的判定与性质是解题关键;利用等腰直角三角形的性质的出OE的长是解题关键,又利用了二次函数的性质. 每项建议案实施完毕,实施部门应根据结果写出总结报告,实事求是的说明产生的经济效益或者其他积极效果,呈报总经办。 总经办应将实施完毕的建议案提交给评委会进行效果评估,确定奖励登记,对符合条件的项目,应整理材料,上报总经理审批后给建议人颁发奖励。 总经办应做好合理化建议的统计记录及资料归档管理。查看更多