- 2021-05-10 发布 |
- 37.5 KB |
- 26页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学基础知识试卷
2018年中考数学基础知识试卷 一.选择题(共12分) 1.﹣23的相反数是( ) A.﹣8 B.8 C.﹣6 D.6 2.关于的叙述正确的是( ) A.在数轴上不存在表示的点 B.=+ C.=±2 D.与最接近的整数是3 3.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E. 若∠1=35°,则∠2的度数为( ) A.20° B.30° C.35° D.55° 4.如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点P到AB所在直线的距离等于( ) A.1 B. C. D.2 5.下列计算正确的是( ) A.a3•a2=a6 B.(﹣2a2)3=﹣8a6 C.(a+b)2=a2+b2 D.2a+3a=5a2 6.如图,⊙O的半径为6,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则线段BC的长为( ) A. B.3 C. D.6 二.填空题(共24分) 7.分解因式:x3﹣4x= . 8.△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是 . 9.在实数﹣5,﹣,0,π,中,最大的一个数是 . 10.计算:(+)•= . 11.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 度. 12.二元一次方程组==x+2的解是 . 13.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是 . 14.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为 . 三.解答题(共20分) 15.小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程. 16.如图,在▱ABCD中,点E是AB边的中点,DE的延长线与CB的延长线交于点F. 求证:BC=BF. 17.计算:(﹣)×+|﹣2|﹣()﹣1. 18.某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价. 四、解答题(共28分) 19.某公司共25名员工,下表是他们月收入的资料. 月收入/元 45000 18000 10000 5500 4800 3400 3000 2200 人数 1 1 1 3 6 1 11 1 (1)该公司员工月收入的中位数是 元,众数是 元. (2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由. 20.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD. (1)求证:四边形ABCD是菱形; (2)若∠ADB=30°,BD=6,求AD的长. 21.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明. 22.A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题: (1)表示乙离A地的距离与时间关系的图象是 (填l1或l2); 甲的速度是 km/h,乙的速度是 km/h; (2)甲出发多少小时两人恰好相距5km? 五、(共16分) 23.【探究函数y=x+的图象与性质】 (1)函数y=x+的自变量x的取值范围是 ; (2)下列四个函数图象中函数y=x+的图象大致是 ; (3)对于函数y=x+,求当x>0时,y的取值范围. 请将下列的求解过程补充完整. 解:∵x>0 ∴y=x+=()2+()2=(﹣)2+ ∵(﹣)2≥0 ∴y≥ . [拓展运用] (4)若函数y=,则y的取值范围 . 24.(1)感知:如图①,以△ABC的边AB和BC为边向外作等腰直角三角形ABD和等腰直角三角形BCE,其中∠ABD=∠CBE=90°,连接AE、DC.求证:△ABE≌△DBC. (2)应用:在(1)的条件下,若AE=8,求四边形ACED的面积. (3)拓展:如图②,在锐角∠BAC内有点P,以点P为直角顶点分别作等腰直角三角形DEP和等腰直角三角形FGP,点D、E、F、G分别在边AB和AC上,连结EF、DG.若FG∥EP,且DE=4,PG=2,求四边形DEFG的面积. 六、(共20分) 25.如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒. (1)求线段AQ的长;(用含t的代数式表示) (2)连结PQ,当PQ与△ABC的一边平行时,求t的值; (3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值. 26.如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(0,3),点M、N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E. (1)求二次函数y=ax2+bx+c的表达式; (2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积; (3)若∠DMN=90°,MD=MN,求点M的横坐标. 2018年中考数学基础知识试卷 一.选择题(共6小题) 1.(2016•营口)﹣23的相反数是( ) A.﹣8 B.8 C.﹣6 D.6 解:∵﹣23=﹣8 ﹣8的相反数是8 ∴﹣23的相反数是8. 故选:B 2.(2017•连云港)关于的叙述正确的是( ) A.在数轴上不存在表示的点 B.=+ C.=±2 D.与最接近的整数是3 解:A、在数轴上存在表示的点,故选项错误; B、≠+,故选项错误; C、=2,故选项错误; D、与最接近的整数是3,故选项正确. 故选:D. 3.(2017•山西)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( ) A.20° B.30° C.35° D.55° 解:∵∠1=35°,CD∥AB, ∴∠ABD=35°,∠DBC=55°, 由折叠可得∠DBC'=∠DBC=55°, ∴∠2=∠DBC'﹣∠DBA=55°﹣35°=20°, 故选:A. 4.(2017•湖州)如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点P到AB所在直线的距离等于( ) A.1 B. C. D.2 解:连接CP并延长,交AB于D, ∵P是Rt△ABC的重心, ∴CD是△ABC的中线,PD=CD, ∵∠C=90°, ∴CD=AB=3, ∵AC=BC,CD是△ABC的中线, ∴CD⊥AB, ∴PD=1,即点P到AB所在直线的距离等于1, 故选:A. 5.(2017•牡丹江)下列计算正确的是( ) A.a3•a2=a6 B.(﹣2a2)3=﹣8a6 C.(a+b)2=a2+b2 D.2a+3a=5a2 解:A、a3•a2=a5,故此选项错误; B、(﹣2a2)3=﹣8a6,正确; C、(a+b)2=a2+2ab+b2,故此选项错误; D、2a+3a=5a,故此选项错误; 故选:B. 6.(2017•遂宁)如图,⊙O的半径为6,△ABC是⊙ O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则线段BC的长为( ) A. B.3 C. D.6 解:∵∠BAC与∠BOC互补, ∴∠BAC+∠BOC=180°, ∵∠BAC=∠BOC, ∴∠BOC=120°, 过O作OD⊥BC,垂足为D, ∴BD=CD, ∵OB=OC, ∴OB平分∠BOC, ∴∠DOC=∠BOC=60°, ∴∠OCD=90°﹣60°=30°, 在Rt△DOC中,OC=6, ∴OD=3, ∴DC=3, ∴BC=2DC=6, 故选:C. 二.填空题(共8小题) 7.(2017•大庆)分解因式:x3﹣4x= x(x+2)(x﹣2) . 解:x3﹣4x, =x(x2﹣4), =x(x+2)(x﹣2). 故答案为:x(x+2)(x﹣2). 8.(2017•达州)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是 1<m<4 . 解:延长AD至E,使AD=DE,连接CE,则AE=2m, ∵AD是△ABC的中线, ∴BD=CD, 在△ADB和△EDC中, ∵, ∴△ADB≌△EDC, ∴EC=AB=5, 在△AEC中,EC﹣AC<AE<AC+EC, 即5﹣3<2m<5+3, ∴1<m<4, 故答案为:1<m<4. 9.(2017•陕西)在实数﹣5,﹣,0,π,中,最大的一个数是 π . 解:根据实数比较大小的方法,可得 π>>0>>﹣5, 故实数﹣5,,0,π,其中最大的数是π. 故答案为:π. 10.(2017•荆门)计算:(+)•= 1 . 解:原式=•=•=1. 故答案为:1 11.(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 108 度. 解:如图, 由正五边形的内角和,得∠1=∠2=∠3=∠4=108°, ∠5=∠6=180°﹣108°=72°, ∠7=180°﹣72°﹣72°=36°. ∠AOB=360°﹣108°﹣108°﹣36°=108°, 故答案为:108. 12.(2017•乐山)二元一次方程组==x+2的解是 . 解:原方程可化为:, 化简为, 解得:. 故答案为:; 13.(2017•阿坝州)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是 (672,1) . 解:由图可得,P6(2,0),P12(4,0),…,P6n(2n,0),P6n+1(2n,1), 2016÷6=336, ∴P6×336(2×336,0),即P2016(672,0), ∴P2017(672,1), 故答案为:(672,1). 14.(2017•鞍山)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为 . 解:∵在△ABC中,∠C=90°,AC=4,BC=3, ∴AB=5, ∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处, ∴AD=AB=5, ∴CD=AD﹣AC=1, ∴四边形AEDB的面积为, 故答案为:. 三.解答题(共12小题) 15.(2017•舟山)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程. 解:错误的是①②⑤,正确解答过程如下: 去分母,得3(1+x)﹣2(2x+1)≤6, 去括号,得3+3x﹣4x﹣2≤6, 移项,得3x﹣4x≤6﹣3+2, 合并同类项,得﹣x≤5, 两边都除以﹣1,得x≥﹣5. 16.(2017•广元)如图,在▱ABCD中,点E是AB边的中点,DE的延长线与CB的延长线交于点F. 求证:BC=BF. 证明:∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC, 又∵点F在CB的延长线上, ∴AD∥CF, ∴∠1=∠2. ∵点E是AB边的中点, ∴AE=BE. ∵在△ADE与△BFE中, , ∴△ADE≌△BFE(AAS), ∴AD=BF, ∴BC=BF. 17.(2017•陕西)计算:(﹣)×+|﹣2|﹣()﹣1. 解:原式=﹣+2﹣﹣2 =﹣2﹣ =﹣3 18.(2017•长春)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价. 解:设跳绳的单价为x元,则排球的单价为3x元, 依题意得:﹣=30, 解方程,得x=15. 经检验:x=15是原方程的根,且符合题意. 答:跳绳的单价是15元. 19.(2017•南京)某公司共25名员工,下表是他们月收入的资料. 月收入/元 45000 18000 10000 5500 4800 3400 3000 2200 人数 1 1 1 3 6 1 11 1 (1)该公司员工月收入的中位数是 3400 元,众数是 3000 元. (2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由. 解:(1)共有25个员工,中位数是第13个数, 则中位数是3400元; 3000出现了11次,出现的次数最多,则众数是3000. 故答案为3400;3000; (2)用中位数或众数来描述更为恰当.理由: 平均数受极端值45000元的影响,只有3个人的工资达到了6276元,不恰当; 20.(2017•襄阳)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD. (1)求证:四边形ABCD是菱形; (2)若∠ADB=30°,BD=6,求AD的长. (1)证明:∵AE∥BF, ∴∠ADB=∠CBD, 又∵BD平分∠ABF, ∴∠ABD=∠CBD, ∴∠ABD=∠ADB, ∴AB=AD, 同理:AB=BC, ∴AD=BC, ∴四边形ABCD是平行四边形, 又∵AB=AD, ∴四边形ABCD是菱形; (2)解:∵四边形ABCD是菱形,BD=6, ∴AC⊥BD,OD=OB=BD=3, ∵∠ADB=30°, ∴cos∠ADB==, ∴AD==2. 21.(2017•衡阳)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”. (1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少? (2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明. 解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=; (2)画树状图为: 共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1, 所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=. 22.(2017•青岛)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题: (1)表示乙离A地的距离与时间关系的图象是 l2 (填l1或l2); 甲的速度是 30 km/h,乙的速度是 20 km/h; (2)甲出发多少小时两人恰好相距5km? 解:(1)由题意可知,乙的函数图象是l2, 甲的速度是=30km/h,乙的速度是=20km/h. 故答案为l2,30,20. (2)设甲出发x小时两人恰好相距5km. 由题意30x+20(x﹣0.5)+5=60或30x+20(x﹣0.5)﹣5=60 解得x=1.3或1.5, 答:甲出发1.3小时或1.5小时两人恰好相距5km. 23.(2017•自贡)【探究函数y=x+的图象与性质】 (1)函数y=x+的自变量x的取值范围是 x≠0 ; (2)下列四个函数图象中函数y=x+的图象大致是 C ; (3)对于函数y=x+,求当x>0时,y的取值范围. 请将下列的求解过程补充完整. 解:∵x>0 ∴y=x+=()2+()2=(﹣)2+ 4 ∵(﹣)2≥0 ∴y≥ 4 . [拓展运用] (4)若函数y=,则y的取值范围 y≥1或y≤﹣11 . 解:(1)函数y=x+的自变量x的取值范围是x≠0; (2)函数y=x+的图象大致是C; (3)解:∵x>0 ∴y=x+=()2+()2=(﹣)2+4 ∵(﹣)2≥0 ∴y≥4. (4)①当x>0,y==x+﹣5═()2+()2﹣5=(﹣)2+1 ∵(﹣)2≥0, ∴y≥1. ②x<0,y==x+﹣5═﹣[()2+()2+5]=﹣(﹣)2﹣11= ∵﹣(﹣)2≤0, ∴y≤﹣11. 故答案为:x≠0,C,4,4,y≥1或y≤﹣11, 24.(1)感知:如图①,以△ABC的边AB和BC为边向外作等腰直角三角形ABD和等腰直角三角形BCE,其中∠ABD=∠CBE=90°,连接AE、DC.求证:△ABE≌△DBC. (2)应用:在(1)的条件下,若AE=8,求四边形ACED的面积. (3)拓展:如图②,在锐角∠BAC内有点P,以点P为直角顶点分别作等腰直角三角形DEP和等腰直角三角形FGP,点D、E、F、G分别在边AB和AC上,连结EF、DG.若FG∥EP,且DE=4,PG=2,求四边形DEFG的面积. 解:(1)∵BA=BD,BC=BE,∠ABD=∠CBE=90°, ∴∠ABE=∠DBC, 在△ABE和△DBC中, , ∴△ABE≌△DBC. (2)设CD与AE交于点G,AB与CD交于点O. ∵△ABE≌△DBC, ∴∠BAE=∠BDC,AE=DC=8, ∵∠BDC+∠DOB=90°, ∵∠DOB=∠AOG, ∴∠BAE+∠AOG=90°, ∴∠AGD=90°, ∴AE⊥CD, ∴S四边形ADEC=•CD•AG+•CD•EG=•CD•AE=×8×8=32. (3)如图②中,延长DP交AG于M,连接DF、EG. (1)可知△DPF≌△EPG,DF=EG,DF⊥EG, ∵PE∥AG, ∴∠DEP=∠A=45°, ∵∠ADM=45°, ∴∠A=∠ADM=45°, ∴∠AMD=90°, ∵PF=PG, ∴MF=MG, ∵DE=4,PG=2, ∴DP=2,PM=FM=MG=, ∴, ∴DF===2, ∴S四边形DEFG=•DF•EG=10. 25.(2017•长春)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒. (1)求线段AQ的长;(用含t的代数式表示) (2)连结PQ,当PQ与△ABC的一边平行时,求t的值; (3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值. 解:(1)在Rt△ABC中,∵∠C=90°,AB=10,BC=6, ∴AC===8, ∵CQ=t, ∴AQ=8﹣t(0≤t≤4). (2)①当PQ∥BC时,=, ∴=, ∴t=s. ②当PQ∥AB时,=, ∴=, ∴t=3, 综上所述,t=s或3s时,当PQ与△ABC的一边平行. (3)①如图1中,a、当0≤t≤时,重叠部分是四边形PEQF. S=PE•EQ=3t•(8﹣4t﹣t)=﹣16t2+24t. b、如图2中,当<t≤2时,重叠部分是四边形PNQE. S=S四边形PEQF﹣S△PFN=(16t2﹣24t)﹣•[5t﹣(8﹣t)]•[5t﹣(8﹣t)]=. c、如图3中,当2<t≤3时,重叠部分是五边形MNPBQ. S=S四边形PBQF﹣S△FNM=t•[6﹣3(t﹣2)]﹣•[t﹣4(t﹣2)]•[t﹣4(t﹣2)]=﹣t2+32t﹣24. ②a、如图4中,当DE:DQ=1:2时,DF将矩形PEQF分成两部分的面积比为1:2. 则有(4﹣4t):(4﹣t)=1:2,解得t=s, b、如图5中,当NE:PN=1:2时,DF将矩形PEQF分成两部分的面积比为1:2. ∴DE:DQ=NE:FQ=1:3, ∴(4t﹣4):(4﹣t)=1:3, 解得t=s, 综上所述,当t=s或s时,DF将矩形PEQF分成两部分的面积比为1:2. 26.(2017•威海)如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(0,3),点M、N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E. (1)求二次函数y=ax2+bx+c的表达式; (2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积; (3)若∠DMN=90°,MD=MN,求点M的横坐标. 解:(1)∵抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0), ∴设抛物线的函数解析式为y=a(x+1)(x﹣3), 将点C(0,3)代入上式,得:3=a(0+1)(0﹣3), 解得:a=﹣1, ∴所求抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3; (2)由(1)知,抛物线的对称轴为x=﹣=1, 如图,设点M坐标为(m,﹣m2+2m+3), ∴ME=|﹣m2+2m+3|, ∵M、N关于x=1对称,且点M在对称轴右侧, ∴点N的横坐标为2﹣m, ∴MN=2m﹣2, ∵四边形MNFE为正方形, ∴ME=MN, ∴|﹣m2+2m+3|=2m﹣2, 分两种情况: ①当﹣m2+2m+3=2m﹣2时,解得:m1=、m2=﹣(不符合题意,舍去), 当m=时,正方形的面积为(2﹣2)2=24﹣8; ②当﹣m2+2m+3=2﹣2m时,解得:m3=2+,m4=2﹣(不符合题意,舍去), 当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8; 综上所述,正方形的面积为24+8或24﹣8. (3)设BC所在直线解析式为y=kx+b, 把点B(3,0)、C(0,3)代入表达式,得: ,解得:, ∴直线BC的函数表达式为y=﹣x+3, 设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3),点D(a,﹣a+3), ①点M在对称轴右侧,即a>1, 则|﹣a+3﹣(﹣a2+2a+3)|=a﹣(2﹣a),即|a2﹣3a|=2a﹣2, 若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2a﹣2, 解得:a=或a=<1(舍去); 若a2﹣3a<0,即0≤a≤3,a2﹣3a=2﹣2a, 解得:a=﹣1(舍去)或a=2; ②点M在对称轴左侧,即a<1, 则|﹣a+3﹣(﹣a2+2a+3)|=2﹣a﹣a,即|a2﹣3a|=2﹣2a, 若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2﹣2a, 解得:a=﹣1或a=2(舍); 若a2﹣3a<0,即0≤a≤3,a2﹣3a=2a﹣2, 解得:a=(舍去)或a=; 综上,点M的横坐标为、2、﹣1、. 查看更多