- 2021-05-10 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
桂林2015中考数学试题含答案
一、选择题(共12小题,每小题3分,满分36分) 1.(3分)下列四个实数中最大的是( ) A.﹣5 B.0 C.π D.3 2.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是( ) A.110° B.120° C.130° D.140° 3.(3分)桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是( ) A.﹣8℃ B.6℃ C.7℃ D.8℃ 4.(3分)下列数值中不是不等式的解的是( ) A.5 B.4 C.3 D.2 5.(3分)下列四个物体的俯视图与右边给出视图一致的是( ) A. B. C. D. 6.(3分)下列计算正确的是( ) A. B. C. D. 7.(3分)某市七天的空气质量指数分别是:28,45,28,45,28,30,53,这组数据的众数是( ) A.28 B.30 C.45 D.53 8.(3分)下列各组线段能构成直角三角形的一组是( ) A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6 9.(3分)如图,在△ABC中,AB=10,AC=8,BC=12,AD⊥BC于D,点E、F分别在AB、AC边上,把△ABC沿EF折叠,使点A与点D恰好重合,则△DEF的周长是( ) A.14 B.15 C.16 D.17 10.(3分)如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是( ) A.18 B. C.36 D. 11.(3分)如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值范围是( ) A. B. C. D. 12.(3分)如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连接PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是( ) A.8 B.10 C.3π D.5π 二.填空题(共6小题,每小题3分,满分18分) 13.(3分)单项式的次数是 . 14.(3分)2015中国﹣东盟博览会旅游展5月29日在桂林国际会展中心开馆,展览规模约达23000平方米,将23000平方米用科学记数法表示为 平方米. 15.(3分)在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是 . 16.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是 . 17.(3分)如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数的图象交BC于D,连接AD,则四边形AOCD的面积是 . 18.(3分)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n行有 个点. 三.解答题(共8小题,满分66分) 19.(6分)计算:. 20.(6分)先化简,再求值:,其中. 21.(8分)如图,在▱ABCD中,E、F分别是AB、CD的中点. (1)求证:四边形EBFD为平行四边形; (2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM. 22.(8分)某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示: (1)这6个学雷锋小组在2015年3月份共做好事多少件? (2)补全条形统计图; (3)请估计该市300个学雷锋小组在2015年3月份共做好事多少件? 23.(8分)如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1). (1)在图中画出△ABC向左平移3个单位后的△A1B1C1; (2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2; (3)在(2)的条件下,AC边扫过的面积是 . 24.(8分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元, 20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元? (2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 25.(10分)如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点. (1)如图1,求⊙O的半径; (2)如图1,若点E是BC的中点,连接PE,求PE的长度; (3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN. 26.(12分)如图,已知抛物线与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动. (1)直接写出抛物线的解析式: ; (2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少? (3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.查看更多