中考数学专题复习卷方程组与不等式组

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考数学专题复习卷方程组与不等式组

方程(组)与不等式(组)‎ 一、填空题(本大题共4小题,每小题5分,共20分)‎ ‎1.已知|x﹣2y|+(3x﹣4y﹣2)2=0,则xy=   .‎ ‎2.若关于x的一元二次方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是   .‎ ‎3.对于实数a,b定义一种新运算“⊗”:a⊗b=,例如,1⊗3==﹣.则方程x⊗2=﹣1的解是   .‎ ‎4.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作进行了两次就停止,则x的取值范围是   .‎ 二、选择题(本大题共10小题,每小题4分,共40分)‎ ‎5.将方程﹣=1去分母得(  )‎ A.2x﹣(x﹣2)=6 B.2x﹣x﹣2=6 C.2x﹣(x﹣2)=1 D.2x﹣x﹣2=1‎ ‎6.已知x,y是方程组的解,则x﹣y的值是(  )‎ A.1 B.2 C.3 D.4‎ ‎7.下列方程中是关于x的一元二次方程的是(  )‎ A.x2++1=0 B.ax2+bx+c=0 ‎ C.(x﹣2)(x+3)=1 D.2x2﹣2xy+y2=0‎ ‎8.用配方法解一元二次方程x2﹣8x+2=0,此方程可化为的正确形式是(  )‎ A.(x﹣4)2=14 B.(x﹣4)2=18 C.(x+4)2=14 D.(x+4)2=18‎ ‎9.已知关于x的方程的解是正整数,且k为整数,则k的值是(  )‎ A.0 B.﹣2 C.0或6 D.﹣2或6‎ ‎10.下列不等式的变形不正确的是(  )‎ A.若a>b,则a+3>b+3 B.若﹣a>﹣b则a<b: ‎ C.若﹣x<y,则x>﹣2y D.若﹣2x>a,则x>﹣a ‎11.若关于x,y的方程组满足1<x+y<2,则k的取值范围是(  )‎ A.0<k<1 B.﹣1<k<0 C.1<k<2 D.0<k<‎ ‎12.为了绿化校园,某班学生参与共种植了144棵树苗.其中男生每人种3棵,女生每人种2棵,且该班男生比女生多8人,设男生有x人,女生有y人,根据题意,所列方程组正确的是(  )‎ A. B. C. D.‎ ‎13.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为(  )‎ A.32×20﹣32x﹣20x=540 B.(32﹣x)(20﹣x)=540 ‎ C.32x+20x=540 D.(32﹣x)(20﹣x)+x2=540‎ ‎14.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是(  )‎ A.= B.=+100 ‎ C.= D.=﹣100‎ 三、解答题(本大题共2小题,每小题8分,满分16分)‎ ‎15.解下列方程:‎ ‎(1)x2﹣2x=2‎ ‎(2)(2x﹣1)2=4x﹣2‎ ‎16.解不等式组并将解集在数轴上表示.‎ 四、解答题(本大题共2小题,每小题8分,满分16分)‎ ‎17.当x为何值时,1+和的值相等.‎ ‎18.关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.‎ ‎(1)求k的取值范围;‎ ‎(2)当k=4时,求方程的根.‎ 五、解答题(本大题共2小题,每小题10分,满分20分)‎ ‎19.依法纳税是公民应尽的义务.修订后的新《个税法》于2019年1月1日起全面施行,相关税率表如下:‎ 例如:某人1月份应纳税所得额为3500元,应纳税:3000×3%+500×10%=140元.‎ ‎(1)若甲1月份应纳税所得额为x元,且8000≤x≤12000时,则甲其应纳税   元;(用含x的代数式表示并化简)‎ ‎(2)若小明的父母1月份应纳税所得额共计4400元(父亲应纳税所得额超过母亲),且二人分别纳税共计202元,求小明父母1月份的应纳税所得额分别为多少元?‎ 级别 全月应纳税所得额 税率 ‎1‎ 不超过3000元的部分 ‎3%‎ ‎2‎ 超过3000元至12000元的部分 ‎10%‎ ‎3‎ 超过12000元至25000元的部分 ‎20%‎ ‎4‎ 超过25000元至35000元的部分 ‎25%‎ ‎5‎ 超过35000元至55000元的部分 ‎30%‎ ‎6‎ 超过55000元至80000元的部分 ‎35%‎ ‎7‎ 超过80000元的部分 ‎45%‎ ‎20.重百商场销售A、B两款羽绒服,A款成本每件1000元,B款成本每件1200元,B款售价是A款售价的倍.今年一月份A款羽绒服比B款羽绒服多卖10件,且两款羽绒服一月份的销售额都刚好到达6万元.‎ ‎(1)请问A、B两款羽绒服的售价分别为多少元?‎ ‎(2)今年二月份恰逢春节,商场为了促销,A款羽绒服的售价降低了,结果A款羽绒服的销量在一月份销量的基础上增加了,B款羽绒服的售价打九折,结果B款羽绒服的销量在一月份销量的基础上增加了m%,最终商场二月份销售A、B两款羽绒服的总利润为38000元,求m的值.‎ 六、解答题(本大题满分12分)‎ ‎21.某商家预测一种应季衬衫能畅销市场,就用16800元购进了一批这种村衫,面市后果然供不应求,商家又用36400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.‎ ‎(1)该商家购进的第一批村衫是多少件?‎ ‎(2)若两批村衫按相同的标价销售,最后剩下50件按六折优惠卖出,如果两批衬衫全部售完后利润不低于20%(不考虑其他因素),那么每件衬衫的标价至少是多少元?‎ 七、解答题(本题满分12分)‎ ‎22.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.‎ ‎(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?‎ ‎(2)已知A型扫地车每辆价格为25万元,B 型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?‎ 八、解答题(本题满分14分)‎ ‎23.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.‎ ‎(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?‎ ‎(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.‎ ‎(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?‎ 参考答案 ‎1.2.‎ ‎2.k>0且k≠1.‎ ‎3.x=5.‎ ‎4.29.5<x≤49.‎ ‎5.A.6.A.7.C.8.A.9.D.10.D.11.A.12.B.13.B.14.B.‎ ‎15.解:(1)x2﹣2x+1=3,‎ ‎(x﹣1)2=3,‎ x﹣1=±,‎ 所以x1=1+,x2=1﹣;‎ ‎(2)(2x﹣1)2﹣2(2x﹣1)=0,‎ ‎(2x﹣1)(2x﹣1﹣2)=0,‎ ‎2x﹣1=0或2x﹣1﹣2=0,‎ 所以x1=,x2=.‎ ‎16.解:,‎ 解①得x>﹣6,‎ 解②得x≤2,‎ 所以不等式组的解集为﹣6<x≤2,‎ 用数轴表示为 ‎.‎ ‎17.解:根据题意得:‎ ‎1+=,‎ 方程两边同时乘以15得:15+5(x﹣3)=3(x+4),‎ 去括号得:15+5x﹣15=3x+12,‎ 移项得:5x﹣3x=12+15+15,‎ 合并同类项得:2x=12,‎ 系数化为1得:x=6,‎ 即当x为6时,1+和的值相等.‎ ‎18.解:(1)∵方程x2﹣3x﹣k=0有两个不相等的实数根,‎ ‎∴△=(﹣3)2﹣4×1×(﹣k)>0,‎ 解得:k>﹣;‎ ‎(2)将k=4代入方程,得:x2﹣3x﹣4=0,‎ 则(x+1)(x﹣4)=0,‎ ‎∴x+1=0或x﹣4=0,‎ 解得:x1=4,x2=﹣1.‎ ‎19.解:(1)当8000≤x≤12000时,甲其应纳税3000×3%+10%(x﹣3000)=0.1x﹣210,‎ 故答案为:(0.1x﹣210);‎ ‎(2)设父亲应纳税所得额为x元,母亲应纳税所得额为(4400﹣x)元,‎ ‎∵父亲应纳税所得额超过母亲,‎ ‎∴x>2200,4400﹣x<2200,‎ ‎①当2200<x<3000时,4400×3%=132,不合题意,舍去;‎ ‎②当x>3000时,(4400﹣x)×3%+0.1x﹣210=202,‎ 解得:x=4000,‎ ‎∴4400﹣x=400,‎ 答:小明父母1月份的应纳税所得额分别为4000元和400元.‎ ‎20.解:(1)设A款羽绒服的售价为x元/件,则B款羽绒服的售价为x元/件,‎ 依题意,得:﹣=10,‎ 解得:x=1500,‎ 经检验,x=1500是原方程的解,且符合题意,‎ ‎∴x=2000.‎ 答:A款羽绒服的售价为1500元/件,B款羽绒服的售价为2000元/件.‎ ‎(2)由(1)得,一月份A款羽绒服销售了40件,B款羽绒服销售了30件,‎ 依题意,得:[1500(1﹣m%)﹣1000]×40(1+m%)+(2000×0.9﹣1200)×30(1+m%)=38000,‎ 整理,得:m2﹣40m=0,‎ 解得:m1=40,m2=0.‎ 答:m的值为40.‎ ‎21.解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有 ‎+10=,‎ 解得x=140,‎ 经检验,x=140是原方程的解,且符合题意.‎ 答:该商家购进的第一批衬衫是140件.‎ ‎(2)3x=3×140=520,‎ 设每件衬衫的标价y元,依题意有 ‎(520﹣50)y+50×0.6y≥(16800+36400)×(1+20%),‎ 解得y≥127.68.‎ 答:每件衬衫的标价至少是127.68元.‎ ‎22.解:(1)设A、B两种型号的扫地车每辆每周分别可以处理垃圾a吨、b吨,‎ ‎,‎ 解得,,‎ 答:(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾40吨,30吨;‎ ‎(2)设购买A型扫地车m辆,B型扫地车(40﹣m)辆,所需资金为y元,‎ ‎,解得,20≤m≤22,‎ ‎∵m为整数,‎ ‎∴m=20,21,22,‎ ‎∴共有三种购买方案,‎ 方案一:购买A型扫地车20辆,B型扫地车20辆;‎ 方案二:购买A型扫地车21辆,B型扫地车19辆;‎ 方案三:购买A型扫地车22辆,B型扫地车18辆;‎ ‎∵y=25m+20(40﹣m)=5m+800,‎ ‎∴当m=20时,y取得最小值,此时y=900,‎ 答:方案一:购买A型扫地车20辆,B型扫地车20辆所需资金最少,最少资金是900万元.‎ ‎23.解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有 ‎(6﹣x)•2x=8,‎ 解得x1=2,x2=4,‎ 经检验,x1,x2均符合题意.‎ 故经过2秒或4秒,△PBQ的面积等于8cm2;‎ ‎(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有 ‎△ABC的面积=×6×8=24,‎ ‎(6﹣y)•2y=12,‎ y2﹣6y+12=0,‎ ‎∵△=b2﹣4ac=36﹣4×12=﹣12<0,‎ ‎∴此方程无实数根,‎ ‎∴线段PQ不能否将△ABC分成面积相等的两部分;‎ ‎(3)①点P在线段AB上,点Q在线段CB上(0<x<4),‎ 设经过m秒,依题意有 ‎(6﹣m)(8﹣2m)=1,‎ m2﹣10m+23=0,‎ 解得m1=5+,m2=5﹣,‎ 经检验,m1=5+不符合题意,舍去,‎ ‎∴m=5﹣;‎ ‎②点P在线段AB上,点Q在射线CB上(4<x<6),‎ 设经过n秒,依题意有 ‎(6﹣n)(2n﹣8)=1,‎ n2﹣10n+25=0,‎ 解得n1=n2=5,‎ 经检验,n=5符合题意.‎ ‎③点P在射线AB上,点Q在射线CB上(x>6),‎ 设经过k秒,依题意有 ‎(k﹣6)(2k﹣8)=1,‎ k2﹣10k+23=0,‎ 解得k1=5+,k2=5﹣,‎ 经检验,k1=5﹣不符合题意,舍去,‎ ‎∴k=5+;‎ 综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1cm2.‎
查看更多

相关文章

您可能关注的文档