- 2021-05-10 发布 |
- 37.5 KB |
- 35页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
石牌中学中考专题复习导学案特殊四边形含答案
2017年中考数学专题练习23《特殊四边形》 【知识归纳】 一、矩形 1.定义: 有一个角是 的平行四边形叫做矩形 2.性质 (1)矩形的四个角都是 ; (2)矩形的对角线互相平分并且 (3)矩形是一个轴对称图形,它有 条对称轴 3.判定 (1)根据矩形的定义; (2)有 个角是直角的平行四边形是矩形; (3)对角线 的平行四边形是矩形 二.菱形 1.定义 有一组邻边相等的平行四边形是菱形 2.性质 (1)菱形的四条边 ; (2)菱形的对角线互相 平分; (3)每条对角线平分 (4)菱形是 对称图形,两条对角线所在的直线是它的对称轴,菱形是中心对称图形,它的对称中心是两条对角线的交点 3.判定 (1)根据菱形的定义; (2)四条边 的四边形是菱形; (3)对角线互相 的平行四边形是菱形 三.正方形 1.定义 有一组邻边相等,且有一个角是直角的 叫做正方形 2.性质 ①正方形对边平行; ②正方形四边 ; ③正方形四个角都是 ; ④正方形对角线相等,互相垂直平分,每条对角线平分 ; ⑤正方形既是轴对称图形也是 图形,对称轴有 条,对称中心是对角线的交点 3.判定 (1)根据正方形的定义; (2)有一组邻边相等的 是正方形; (3)有一个角是直角的 是正方形 【基础检测】 1.(2016•舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是( ) A. B. C.1 D. 2.(2016•兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积( ) A.2B.4 C.4D.8 3. (2016·云南昆明)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论: ①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有( ) A.1个 B.2个 C.3个 D.4个 4.(2016·黑龙江齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件 使其成为菱形(只填一个即可). 5. (2013山东烟台)如图,□ABCD的周长为36.对角线AC,BD相交于点O.点E是CD的中点.BO=12.则△DOE的周长为___________. 6. (2013四川雅安)在□ABCD中,点E、F分别在AB、CD上,且AE=CF. (1)求证:△ADE≌△CBF; (2)若DF=BF,求证:四边形DEBF为菱形. 7.(2016·贵州安顺·10分)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点. (1)求证:△ABE≌△CDF; (2)当四边形AECF为菱形时,求出该菱形的面积. 8.(2016广西南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°. (1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系; (2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF; (3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离. 【达标检测】 一.选择题 1.如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为( ) A.45° B.55° C.60° D.75° 2.(2016·四川攀枝花)下列关于矩形的说法中正确的是( ) A.对角线相等的四边形是矩形 B.矩形的对角线相等且互相平分 C.对角线互相平分的四边形是矩形 D.矩形的对角线互相垂直且平分 3.(2016·四川内江)下列命题中,真命题是( ) A.对角线相等的四边形是矩形 B.对角线互相垂直的四边形是菱形 C.对角线互相平分的四边形是平行四边形 D.对角线互相垂直平分的四边形是正方形 4.(2016·四川南充)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为( ) A.30° B.45° C.60° D.75° 5.(2016·四川泸州)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( ) A. B. C. D. 6.(2016·湖北荆门)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( ) A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF 二.填空题 7. (2016·内蒙古包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 度. 8. (2016·陕西)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为 . 9. 如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为 . 10. 如图,矩形ABCD中,AD=5,AB=7. 点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为 . 11. 如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形AnBnCnDn的面积为 . 三.解答题 12.(2016·黑龙江哈尔滨)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P. (1)求证:AP=BQ; (2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长. 13.(2016广西南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°. (1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系; (2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF; (3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离. 14.(2016河南)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E. (1)求证:MD=ME; (2)填空: ①若AB=6,当AD=2DM时,DE= ; ②连接OD,OE,当∠A的度数为 时,四边形ODME是菱形. 15.(2016·陕西)问题提出 (1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形. 问题探究 (2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由. 问题解决 (3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由. 【知识归纳答案】 一、矩形 1.定义 有一个角是 直角 的平行四边形叫做矩形 2.性质 (1)矩形的四个角都是 直角 ; (2)矩形的对角线互相平分并且 相等 (3)矩形是一个轴对称图形,它有 2 条对称轴 3.判定 (1)根据矩形的定义; (2)有 1 个角是直角的平行四边形是矩形; (3)对角线 相等 的平行四边形是矩形 二.菱形 1.定义 有一组邻边相等的平行四边形是菱形 2.性质 (1)菱形的四条边 相等 ; (2)菱形的对角线互相 垂直 平分; (3)每条对角线平分 一组对角 (4)菱形是 轴 对称图形,两条对角线所在的直线是它的对称轴,菱形是中心对称图形,它的对称中心是两条对角线的交点 3.判定 (1)根据菱形的定义; (2)四条边 相等 的四边形是菱形; (3)对角线互相 垂直 的平行四边形是菱形 三.正方形 1.定义 有一组邻边相等,且有一个角是直角的 平行四边形 叫做正方形 2.性质 ①正方形对边平行; ②正方形四边 相等 ; ③正方形四个角都是 直角 ; ④正方形对角线相等,互相垂直平分,每条对角线平分 一组对角 ; ⑤正方形既是轴对称图形也是 中心 图形,对称轴有 四 条,对称中心是对角线的交点 3.判定 (1)根据正方形的定义; (2)有一组邻边相等的 矩形 是正方形; (3)有一个角是直角的 菱形 是正方形 【基础检测答案】 1.(2016•舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是( ) A. B. C.1 D. 【分析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB∥CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到,于是得到AE=AF,列方程即可得到结论. 【解答】解:过F作FH⊥AE于H, ∵四边形ABCD是矩形, ∴AB=CD,AB∥CD, ∵AE∥CF, ∴四边形AECF是平行四边形, ∴AF=CE, ∴DE=BF, ∴AF=3﹣DE, ∴AE=, ∵∠FHA=∠D=∠DAF=90°, ∴∠AFH+∠HAF=∠DAE+∠FAH=90°, ∴∠DAE=∠AFH, ∴△ADE∽△AFH, ∴, ∴AE=AF, ∴=3﹣DE, ∴DE=, 故选D. 【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,平行四边形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键. 2.(2016•兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积( ) A.2B.4 C.4D.8 【分析】连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到ODEC为平行四边形,根据邻边相等的平行四边形为菱形得到四边形ODEC为菱形,得到对角线互相平分且垂直,求出菱形OCEF的面积即可. 【解答】解:连接OE,与DC交于点F, ∵四边形ABCD为矩形, ∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD, ∵OD∥CE,OC∥DE, ∴四边形ODEC为平行四边形, ∵OD=OC, ∴四边形ODEC为菱形, ∴DF=CF,OF=EF,DC⊥OE, ∵DE∥OA,且DE=OA, ∴四边形ADEO为平行四边形, ∵AD=2,DE=2, ∴OE=2,即OF=EF=, 在Rt△DEF中,根据勾股定理得:DF==1,即DC=2, 则S菱形ODEC=OE•DC=×2×2=2. 故选A 【点评】此题考查了矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键. 3. (2016·云南省昆明市·4分)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论: ①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有( ) A.1个 B.2个 C.3个 D.4个 【考点】正方形的性质;全等三角形的判定与性质. 【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF; ②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°; ③同②证明△EHF≌△DHC即可; ④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2. 【解答】解:①∵四边形ABCD为正方形,EF∥AD, ∴EF=AD=CD,∠ACD=45°,∠GFC=90°, ∴△CFG为等腰直角三角形, ∴GF=FC, ∵EG=EF﹣GF,DF=CD﹣FC, ∴EG=DF,故①正确; ②∵△CFG为等腰直角三角形,H为CG的中点, ∴FH=CH,∠GFH=∠GFC=45°=∠HCD, 在△EHF和△DHC中,, ∴△EHF≌△DHC(SAS), ∴∠HEF=∠HDC, ∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确; ③∵△CFG为等腰直角三角形,H为CG的中点, ∴FH=CH,∠GFH=∠GFC=45°=∠HCD, 在△EHF和△DHC中,, ∴△EHF≌△DHC(SAS),故③正确; ④∵=, ∴AE=2BE, ∵△CFG为等腰直角三角形,H为CG的中点, ∴FH=GH,∠FHG=90°, ∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD, 在△EGH和△DFH中,, ∴△EGH≌△DFH(SAS), ∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°, ∴△EHD为等腰直角三角形, 过H点作HM垂直于CD于M点,如图所示: 设HM=x,则DM=5x,DH=x,CD=6x, 则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2, ∴3S△EDH=13S△DHC,故④正确; 故选:D. 4.(2016·黑龙江齐齐哈尔·3分)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件 AC⊥BC或∠AOB=90°或AB=BC 使其成为菱形(只填一个即可). 【考点】菱形的判定;平行四边形的性质. 【分析】利用菱形的判定方法确定出适当的条件即可. 【解答】解:如图,平行四边形ABCD的对角线AC,BD相交于点O,添加一个适当的条件为:AC⊥BC或∠AOB=90°或AB=BC使其成为菱形. 故答案为:AC⊥BC或∠AOB=90°或AB=BC 5. (2013山东烟台)如图,□ABCD的周长为36.对角线AC,BD相交于点O.点E是CD的中点.BO=12.则△DOE的周长为__________________. 【答案】15 【解题思路】根据平行四边形的性质,对角线互相平分,两组对边分别相等,可以分别求出 OD、OE+DE的长,即可求解. ∵□ABCD的周长为36,∴BC+CD=18,∵四边形ABCD为平行四边形,∴O是BD的中点,∴OD=6,又∵E是CD的中点,∴OE是△BCD的中位线,∴OE+DE=9,∴△DOE的周长=OD+OE+DE =6+9 =15 【方法指导】本题考查了平行四边形的性质、三角形的中位线定理以及整体思想的运用.求三角形的周长可以分别求出三边的长,但是本题较新颖,根据对角线的交点是对角线的中点,可以求出其中一边的长,而另外两边运用整体思想,求出这两边的长度和后即可求解.在平行四边形中,由于对角线的交点即为中点,再加上另一中点,所以中位线定理是我们的首选. 6. (2013四川雅安)在□ABCD中,点E、F分别在AB、CD上,且AE=CF. (1)求证:△ADE≌△CBF; (2)若DF=BF,求证:四边形DEBF为菱形. 【答案】 (1)证明:∵四边形ABCD是平行四边形, ∴AD=BC,∠A=∠C, 又∵AE=CF,∴△ADE≌△CBF. (2)证明:∵四边形ABCD是平行四边形, ∴AB=CD,AB∥CD. ∵AE=CF, ∴BE=DF,BE∥DF, ∴四边形DEBF是平行四边形, ∵DF=BF,∴□DEBF是菱形. 【解析】(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF; (2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论. 【方法指导】此题主要考查了全等三角形的判定,以及菱形的判定,关键是掌握全等三角形的判定定理,以及菱形的判定定理,平行四边形的性质. 7.(2016·贵州安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点. (1)求证:△ABE≌△CDF; (2)当四边形AECF为菱形时,求出该菱形的面积. 【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等. 第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得. 【解答】(1)证明:∵在▱ABCD中,AB=CD, ∴BC=AD,∠ABC=∠CDA. 又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF. (2)解:∵四边形AECF为菱形时,∴AE=EC. 又∵点E是边BC的中点, ∴BE=EC,即BE=AE. 又BC=2AB=4,∴AB=BC=BE, ∴AB=BE=AE,即△ABE为等边三角形,(6分) ▱ABCD的BC边上的高为2×sin60°=,(7分) ∴菱形AECF的面积为2.(8分) 【点评】考查了全等三角形,四边形的知识以及逻辑推理能力. (1)用SAS证全等; (2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形. 8.(2016广西南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°. (1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系; (2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF; (3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离. 【考点】四边形综合题. 【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形. (2)欲证明BE=CF,只要证明△BAE≌△CAF即可. (3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题. 【解答】(1)解:结论AE=EF=AF. 理由:如图1中,连接AC, ∵四边形ABCD是菱形,∠B=60°, ∴AB=BC=CD=AD,∠B=∠D=60°, ∴△ABC,△ADC是等边三角形, ∴∠BAC=∠DAC=60° ∵BE=EC, ∴∠BAE=∠CAE=30°,AE⊥BC, ∵∠EAF=60°, ∴∠CAF=∠DAF=30°, ∴AF⊥CD, ∴AE=AF(菱形的高相等), ∴△AEF是等边三角形, ∴AE=EF=AF. (2)证明:如图2中,∵∠BAC=∠EAF=60°, ∴∠BAE=∠CAE, 在△BAE和△CAF中, , ∴△BAE≌△CAF, ∴BE=CF. (3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H, ∵∠EAB=15°,∠ABC=60°, ∴∠AEB=45°, 在RT△AGB中,∵∠ABC=60°AB=4, ∴BG=2,AG=2, 在RT△AEG中,∵∠AEG=∠EAG=45°, ∴AG=GE=2, ∴EB=EG﹣BG=2﹣2, ∵△AEB≌△AFC, ∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°, ∵∠EAF=60°,AE=AF, ∴△AEF是等边三角形, ∴∠AEF=∠AFE=60° ∵∠AEB=45°,∠AEF=60°, ∴∠CEF=∠AEF﹣∠AEB=15°, 在RT△EFH中,∠CEF=15°, ∴∠EFH=75°, ∵∠AFE=60°, ∴∠AFH=∠EFH﹣∠AFE=15°, ∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°, 在RT△CHF中,∵∠CFH=30°,CF=2﹣2, ∴FH=CF•cos30°=(2﹣2)•=3﹣. ∴点F到BC的距离为3﹣. 【点评】本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题. 【达标检测答案】 一.选择题(每小题4分,满分40分) 1.如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为( ) A.45° B.55° C.60° D.75° 【答案】C. 【解析】∵四边形ABCD是正方形,∴AB= AD,∠ABC=∠BAD=90°,∠BAC=∠BCA=45°. ∵△ADE是等边三角形,∴AE=AD,∠BCA=45°.∴∠BCE=135°,AB=AD. ∴∠ABE=15°.∴∠CBF=75°.∴∠BFC=60°. 故选C. 2.(2016·四川攀枝花)下列关于矩形的说法中正确的是( ) A.对角线相等的四边形是矩形 B.矩形的对角线相等且互相平分 C.对角线互相平分的四边形是矩形 D.矩形的对角线互相垂直且平分 【考点】矩形的判定与性质. 【分析】根据矩形的性质和判定定理逐个判断即可. 【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误; B、矩形的对角线相等且互相平分,故本选项正确; C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误; D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误; 故选B. 【点评】本题考查了矩形的性质和判定的应用,能熟记矩形的性质和判定定理是解此题的关键. 3.(2016·四川内江)下列命题中,真命题是( ) A.对角线相等的四边形是矩形 B.对角线互相垂直的四边形是菱形 C.对角线互相平分的四边形是平行四边形 D.对角线互相垂直平分的四边形是正方形 [答案]C [考点]特殊四边形的判定。 [解析]满足选项A或选项B中的条件时,不能推出四边形是平行四边形,因此它们都是假命题.由选项D中的条件只能推出四边形是菱形,因此也是假例题.只有选项C中的命题是真命题. 故选C. 4.(2016·四川南充)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为( ) A.30° B.45° C.60° D.75° 【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案. 【解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°, 则NG=AM,故AN=NG, 则∠2=∠4, ∵EF∥AB, ∴∠4=∠3, ∴∠1=∠2=∠3=1/3×90°=30°, ∴∠DAG=60°. 故选:C. 【点评】此题主要考查了翻折变换的性质以及平行线的性质,正确得出∠2=∠4是解题关键. 5.(2016·四川泸州)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( ) A. B. C. D. 【考点】相似三角形的判定与性质;矩形的性质. 【分析】过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理得到AF===2,根据平行线分线段成比例定理得到OH=AE=,由相似三角形的性质得到==,求得AM=AF=,根据相似三角形的性质得到==,求得AN=AF=,即可得到结论. 【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2 ∵BF=2FC,BC=AD=3, ∴BF=AH=2,FC=HD=1, ∴AF===2, ∵OH∥AE, ∴==, ∴OH=AE=, ∴OF=FH﹣OH=2﹣=, ∵AE∥FO, ∴△AME∽FMO, ∴==, ∴AM=AF=, ∵AD∥BF, ∴△AND∽△FNB, ∴==, ∴AN=AF=, ∴MN=AN﹣AM=﹣=, 故选B. 6.(2016·湖北荆门·3分)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( ) A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF 【考点】矩形的性质;全等三角形的判定. 【分析】先根据已知条件判定判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可. 【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC, ∴∠ADF=∠DEC. 又∵DE=AD, ∴△AFD≌△DCE(AAS),故(A)正确; (B)∵∠ADF不一定等于30°, ∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误; (C)由△AFD≌△DCE,可得AF=CD, 由矩形ABCD,可得AB=CD, ∴AB=AF,故(C)正确; (D)由△AFD≌△DCE,可得CE=DF, 由矩形ABCD,可得BC=AD, 又∵BE=BC﹣EC, ∴BE=AD﹣DF,故(D)正确; 故选(B) 二.填空题 7. (2016·内蒙古包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 22.5 度. 【考点】矩形的性质. 【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可. 【解答】解:∵四边形ABCD是矩形, ∴AC=BD,OA=OC,OB=OD, ∴OA=OB═OC, ∴∠OAC=∠ODA,∠OAB=∠OBA, ∴∠AOE=∠OAC+∠OCA=2∠OAC, ∵∠EAC=2∠CAD, ∴∠EAO=∠AOE, ∵AE⊥BD, ∴∠AEO=90°, ∴∠AOE=45°, ∴∠OAB=∠OBA==67.5°, ∴∠BAE=∠OAB﹣∠OAE=22.5°. 故答案为22.5°. 8. (2016·陕西)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为 2﹣2 . 【考点】菱形的性质;等腰三角形的判定;等边三角形的性质. 【分析】如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,求出BD即可解决问题. 【解答】解:如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P. 此时△PBC是等腰三角形,线段PD最短, ∵四边形ABCD是菱形,∠ABC=60°, ∴AB=BC=CD=AD,∠ABC=∠ADC=60°, ∴△ABC,△ADC是等边三角形, ∴BO=DO=×2=, ∴BD=2BO=2, ∴PD最小值=BD﹣BP=2﹣2. 故答案为2﹣2. 9. 如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为 . 【答案】(4,4). 【解析】连接AC、BD交于点E,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AE=CE=AC,BE=DE=BD,∵点B的坐标为(8,2),点D的坐标为(0,2),∴OD=2,BD=8,∴AE=OD=2,DE=4,∴AC=4,∴点C的坐标为:(4,4);故答案为:(4,4). 10. 如图,矩形ABCD中,AD=5,AB=7. 点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为 . 【答案】或. 【解析】如答图,连接B D',过D'作MN⊥AB,交AB于点N,交DC于点M,过D'作D'G⊥BC于点G, ∵点D'落在∠ABC的角平分线上,∴D'N= D'G. 又∵∠NBG=900,∴四边形D'NBG是正方形,△D'NB是等腰直角三角形. 设BN=D'N=x,则 ∵AD=5,AB=7,△AD'E是△ADE沿AE折叠得到,∴AD'=5,. 在Rt△D'NA中,由勾股定理得,即,解得. 易证,△EM D'∽△D'NA,∴. 当BN=D'N=3时,,∴; 当BN=D'N=4时,,∴. ∵DE= D'E,∴DE的长为或. 11. 如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形AnBnCnDn的面积为 . 【答案】. 【解析】在Rt△A1BB1中,由勾股定理可知;==,即正方形A1B1C1D1的面积=;在Rt△A2B1B2中,由勾股定理可知:==;即正方形A2B2C2D2的面积=,…,∴正方形AnBnCnDn的面积=.故答案为:. 三.解答题 12.(2016·黑龙江哈尔滨)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P. (1)求证:AP=BQ; (2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长. 【考点】正方形的性质;全等三角形的判定与性质. 【分析】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析. 【解答】解:(1)∵正方形ABCD ∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90° ∵DP⊥AQ ∴∠ADP+∠DAP=90° ∴∠BAQ=∠ADP ∵AQ⊥BE于点Q,DP⊥AQ于点P ∴∠AQB=∠DPA=90° ∴△AQB≌△DPA(AAS) ∴AP=BQ (2)①AQ﹣AP=PQ ②AQ﹣BQ=PQ ③DP﹣AP=PQ ④DP﹣BQ=PQ 13.(2016广西南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°. (1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系; (2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF; (3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离. 【考点】四边形综合题. 【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形. (2)欲证明BE=CF,只要证明△BAE≌△CAF即可. (3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题. 【解答】(1)解:结论AE=EF=AF. 理由:如图1中,连接AC, ∵四边形ABCD是菱形,∠B=60°, ∴AB=BC=CD=AD,∠B=∠D=60°, ∴△ABC,△ADC是等边三角形, ∴∠BAC=∠DAC=60° ∵BE=EC, ∴∠BAE=∠CAE=30°,AE⊥BC, ∵∠EAF=60°, ∴∠CAF=∠DAF=30°, ∴AF⊥CD, ∴AE=AF(菱形的高相等), ∴△AEF是等边三角形, ∴AE=EF=AF. (2)证明:如图2中,∵∠BAC=∠EAF=60°, ∴∠BAE=∠CAE, 在△BAE和△CAF中, , ∴△BAE≌△CAF, ∴BE=CF. (3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H, ∵∠EAB=15°,∠ABC=60°, ∴∠AEB=45°, 在RT△AGB中,∵∠ABC=60°AB=4, ∴BG=2,AG=2, 在RT△AEG中,∵∠AEG=∠EAG=45°, ∴AG=GE=2, ∴EB=EG﹣BG=2﹣2, ∵△AEB≌△AFC, ∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°, ∵∠EAF=60°,AE=AF, ∴△AEF是等边三角形, ∴∠AEF=∠AFE=60° ∵∠AEB=45°,∠AEF=60°, ∴∠CEF=∠AEF﹣∠AEB=15°, 在RT△EFH中,∠CEF=15°, ∴∠EFH=75°, ∵∠AFE=60°, ∴∠AFH=∠EFH﹣∠AFE=15°, ∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°, 在RT△CHF中,∵∠CFH=30°,CF=2﹣2, ∴FH=CF•cos30°=(2﹣2)•=3﹣. ∴点F到BC的距离为3﹣. 【点评】本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题. 14.(2016河南)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E. (1)求证:MD=ME; (2)填空: ①若AB=6,当AD=2DM时,DE= 2 ; ②连接OD,OE,当∠A的度数为 60° 时,四边形ODME是菱形. 【考点】菱形的判定. 【分析】(1)先证明∠A=∠ABM,再证明∠MDE=∠MBA,∠MED=∠A即可解决问题. (2)①由DE∥AB,得=即可解决问题. ②当∠A=60°时,四边形ODME是菱形,只要证明△ODE,△DEM都是等边三角形即可. 【解答】(1)证明:∵∠ABC=90°,AM=MC, ∴BM=AM=MC, ∴∠A=∠ABM, ∵四边形ABED是圆内接四边形, ∴∠ADE+∠ABE=180°, 又∠ADE+∠MDE=180°, ∴∠MDE=∠MBA, 同理证明:∠MED=∠A, ∴∠MDE=∠MED, ∴MD=ME. (2)①由(1)可知,∠A=∠MDE, ∴DE∥AB, ∴=, ∵AD=2DM, ∴DM:MA=1:3, ∴DE=AB=×6=2. 故答案为2. ②当∠A=60°时,四边形ODME是菱形. 理由:连接OD、OE, ∵OA=OD,∠A=60°, ∴△AOD是等边三角形, ∴∠AOD=60°, ∵DE∥AB, ∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°, ∴△ODE,△DEM都是等边三角形, ∴OD=OE=EM=DM, ∴四边形OEMD是菱形. 故答案为60°. 【点评】本题考查圆内接四边形性质、直角三角形斜边中线性质、菱形的判定等知识,解题的关键是灵活运用这些知识解决问题,记住菱形的三种判定方法,属于中考常考题型. 15.(2016·陕西)问题提出 (1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形. 问题探究 (2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由. 问题解决 (3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由. 【考点】四边形综合题. 【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求; (2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论; (3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论. 【解答】解:(1)如图1,△ADC即为所求; (2)存在,理由:作E关于CD的对称点E′, 作F关于BC的对称点F′, 连接E′F′,交BC于G,交CD于H,连接FG,EH, 则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小, 由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°, ∴AF′=6,AE′=8, ∴E′F′=10,EF=2, ∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10, ∴在边BC、CD上分别存在点G、H, 使得四边形EFGH的周长最小, 最小值为2+10; (3)能裁得, 理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°, ∴∠1=∠2, 在△AEF与△BGF中,, ∴△AEF≌△BGF, ∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x, ∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去), ∴AF=BG=1,BF=AE=2, ∴DE=4,CG=5, 连接EG, 作△EFG关于EG的对称△EOG, 则四边形EFGO是正方形,∠EOG=90°, 以O为圆心,以EG为半径作⊙O, 则∠EHG=45°的点在⊙O上, 连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上, 连接EH′GH′,则∠EH′G=45°, 此时,四边形EFGH′是要想裁得符合要求的面积最大的, ∴C在线段EG的垂直平分线设, ∴点F,O,H′,C在一条直线上, ∵EG=, ∴OF=EG=, ∵CF=2, ∴OC=, ∵OH′=OE=FG=, ∴OH′<OC, ∴点H′在矩形ABCD的内部, ∴可以在矩形ABCD中,裁得符合条件的面积最大的四边形EFGH′部件, 这个部件的面积=EG•FH′=××(+)=5+, ∴当所裁得的四边形部件为四边形EFGH′时,裁得了符合条件的最大部件,这个部件的面积为(5+)m2. 查看更多