- 2021-05-10 发布 |
- 37.5 KB |
- 95页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学试题压轴题汇编
2010年中考数学试题压轴题汇编(一) 1.(2010广东广州,24,14分)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C. (1)求弦AB的长; (2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由; (3)记△ABC的面积为S,若=4,求△ABC的周长. C P D O B A E 【分析】(1)连接OA,OP与AB的交点为F,则△OAF为直角三角形,且OA=1,OF=,借助勾股定理可求得AF的长; F C P D O B A E H G (2)要判断∠ACB是否为定值,只需判定∠CAB+∠ABC的值是否是定值,由于⊙D是△ABC的内切圆,所以AD和BD分别为∠CAB和∠ABC的角平分线,因此只要∠DAE+∠DBA是定值,那么CAB+∠ABC就是定值,而∠DAE+∠DBA等于弧AB所对的圆周角,这个值等于∠AOB值的一半; (3)由题可知=DE (AB+AC+BC),又因为,所以,所以AB+AC+BC=,由于DH=DG=DE,所以在Rt△CDH中,CH=DH=DE,同理可得CG=DE,又由于AG=AE,BE= BH,所以AB+AC+BC=CG+CH+AG+AB+BH=DE+,可得=DE+,解得:DE=,代入AB+AC+BC=,即可求得周长为. 【答案】解:(1)连接OA,取OP与AB的交点为F,则有OA=1. F C P D O B A E H G ∵弦AB垂直平分线段OP,∴OF=OP=,AF=BF. 在Rt△OAF中,∵AF===,∴AB=2AF=. (2)∠ACB是定值. 理由:由(1)易知,∠AOB=120°, 因为点D为△ABC的内心,所以,连结AD、BD,则∠CAB=2∠DAE,∠CBA=2∠DBA, 因为∠DAE+∠DBA=∠AOB=60°,所以∠CAB+∠CBA=120°,所以∠ACB=60°; (3)记△ABC的周长为l,取AC,BC与⊙D的切点分别为G,H,连接DG,DC,DH,则有DG=DH=DE,DG⊥AC,DH⊥BC. ∴ =AB•DE+BC•DH+AC•DG=(AB+BC+AC) •DE=l•DE. ∵=4,∴=4,∴l=8DE. ∵CG,CH是⊙D的切线,∴∠GCD=∠ACB=30°, ∴在Rt△CGD中,CG===DE,∴CH=CG=DE. 又由切线长定理可知AG=AE,BH=BE, ∴l=AB+BC+AC=2+2DE=8DE,解得DE=, ∴△ABC的周长为. 【涉及知识点】垂径定理 勾股定理 内切圆 切线长定理 三角形面积 【点评】本题巧妙将垂径定理、勾股定理、内切圆、切线长定理、三角形面积等知识综合在一起,需要考生从前往后按顺序解题,前面问题为后面问题的解决提供思路,是一道难度较大的综合题 2.(2010广东广州,25,14分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB于点E. (1)记△ODE的面积为S,求S与的函数关系式; (2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由. C D B A E O 【分析】(1)要表示出△ODE的面积,要分两种情况讨论,①如果点E在OA边上,只需求出这个三角形的底边OE长(E点横坐标)和高(D点纵坐标),代入三角形面积公式即可;②如果点E在AB边上,这时△ODE的面积可用长方形OABC的面积减去△OCD、△OAE、△BDE的面积; (2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA边上的线段长度是否变化. 【答案】(1)由题意得B(3,1). 若直线经过点A(3,0)时,则b= 若直线经过点B(3,1)时,则b= 若直线经过点C(0,1)时,则b=1 ①若直线与折线OAB的交点在OA上时,即1<b≤,如图25-a, 图1 此时E(2b,0) ∴S=OE·CO=×2b×1=b ②若直线与折线OAB的交点在BA上时,即<b<,如图2 图2 此时E(3,),D(2b-2,1) ∴S=S矩-(S△OCD+S△OAE +S△DBE ) = 3-[(2b-1)×1+×(5-2b)·()+×3()]= ∴ (2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形OA1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积。 本题答案由无锡市天一实验学校金杨建老师草制! 图3 由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形 根据轴对称知,∠MED=∠NED 又∠MDE=∠NED,∴∠MED=∠MDE,∴MD=ME,∴平行四边形DNEM为菱形. 过点D作DH⊥OA,垂足为H, 由题易知,tan∠DEN=,DH=1,∴HE=2, 设菱形DNEM 的边长为a, 则在Rt△DHM中,由勾股定理知:,∴ ∴S四边形DNEM=NE·DH= ∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为. 【涉及知识点】轴对称 四边形 勾股定理 【点评】本题是一个动态图形中的面积是否变化的问题,看一个图形的面积是否变化,关键是看决定这个面积的几个量是否变化,本题题型新颖是个不可多得的好题,有利于培养学生的思维能力,但难度较大,具有明显的区分度. 3、(宁波市)如图1、在平面直角坐标系中,O是坐标原点,□ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,),点B在轴的正半轴上,点E为线段AD的中点,过点E的直线与轴交于点F,与射线DC交于点G。 (1)求的度数; (2)连结OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△,记直线与射线DC的交点为H。 ①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE; y x C D A O B E G F (图1) x C D A O B E G H F y (图2) x C D A O B E y (图3) ②若△EHG的面积为,请直接写出点F的坐标。 解:(1) (2)(2,) (3)①略 ②过点E作EM⊥直线CD于点M ∵CD∥AB x C D A O B E y (图3) M ∴ ∴ ∵ ∴ ∵△DHE∽△DEG ∴即 当点H在点G的右侧时,设, ∴ 解: ∴点F的坐标为(,0) 当点H在点G的左侧时,设, ∴ 解:,(舍) ∵△DEG≌△AEF ∴ ∵ ∴点F的坐标为(,0) 综上可知,点F的坐标有两个,分别是(,0),(,0) 4.(重庆市)已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止. (1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围; (2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标; (3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由. 解:(1)过点作于点.(如图①) ∵,, ∴. ∵,, ∴. 在Rt中,. (1分) (ⅰ)当时,,,; 过点作于点.(如图①) 在Rt中,∵,∴, ∴. 即 . (3分) 26题答图② (ⅱ)当时,(如图②) ,. ∵,,∴. ∴. 即. 故当时,,当时,. (5分) (2)或或或. (9分) (3)的周长不发生变化. 26题答图③ 延长至点,使,连结.(如图③) ∵, ∴≌. ∴,.…(10分) ∴. ∴. 又∵. ∴≌.∴. (11分) ∴. ∴的周长不变,其周长为4. (12分) 5.(义乌市卷)如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M的坐标; (2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示-,并求出当S=36时点A1的坐标; 图2 O1 A1 O y x B1 C1 D M C B A O y x 图1 D M (3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由. 解:(1)对称轴:直线…………………………………………………….. 1分 解析式:或…………………………2分 顶点坐标:M(1,)……….……………………………………3分 (2)由题意得 3……………………………….1分 得:①…………….………………….2分 得: ②….………………………………………..……3分 把②代入①并整理得:(S>0) (事实上,更确切为S>6)4分 当时, 解得:(注:S>0或S>6不写不扣 分) 把代入抛物线解析式得 ∴点A1(6,3)………5分 (3)存在………………………………………………………………….….…1分 解法一:易知直线AB的解析式为,可得直线AB与对称轴的 C B A O y x 图1-1 D M E P Q F G 交点E的坐标为 ∴BD=5,DE=,DP=5-t,DQ= t 当∥时, 得 ………2分 下面分两种情况讨论: 设直线PQ与直线AB、x轴的交点分别为点F、G ①当时,如图1-1 ∵△FQE∽△FAG ∴∠FGA=∠FEQ ∴∠DPQ=∠DEB 易得△DPQ∽△DEB ∴ ∴ 得 ∴(舍去)…………………………3分 C B A O y x 图1-2 D M E F P Q G ② 当时,如图1-2 ∵△FQE∽△FAG ∴∠FAG=∠FQE ∵∠DQP=∠FQE ∠FAG=∠EBD ∴∠DQP=∠DBE 易得△DPQ∽△DEB ∴ ∴, ∴ ∴当秒时,使直线、直线、轴围成的三角形与直线、直线、抛物线的对称轴围成的三角形相似………………………………4分 解法二:可将向左平移一个单位得到,再用解法一类似的方法可求得 , , ∴ 6.(湖州卷)(本小题12分)如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F. (1)求经过A、B、C三点的抛物线的解析式; (2)当BE经过(1)中抛物线的顶点时,求CF的长; (3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值. 第24题 B C A x y F O D E 解:(1)由题意可得A(0,2), B(2,2), C(3,0), 设所求抛物线的解析式为, 则 解得 . ………………..3分 ∴ 抛物线的解析式为 . ….……………………..1分 (2)设抛物线的顶点为G,则.过点G作GH⊥AB,垂足为H, 则AH=BH=1,GH=. ∵ EA⊥AB, GH⊥AB, ∴ EA∥GH , ∴ GH是△EBA的中位线, ∴ . ………………2分 过点B作BM⊥OC,垂足为M,则BM=OA=AB. ∵ ∠EBF=∠ABM=90 º, ∴ ∠EBA=∠FBM=90 º-∠ABF, ∴ Rt△EBA≌Rt△FBM ,∴ . ∵ CM=OC-OM=3-2=1,∴ CF=FM+CM=. …………….2分 (3)设CF=a,则FM=a-1或1- a, ∴BF2= FM2+BM2=(a-1)2+22=a2-2a+5 . ∵△EBA≌△FBM,∴BE=BF. 则, ….1分 又∵, ……….1分 ∴,即, ….1分 ∴当a=2(在0 PQ时,则点P在线段OC上, ∵ CM∥PQ,CM = 2PQ , ∴点M纵坐标为点Q纵坐标的2倍,即2 = 2(+1),解得x = 0 , ∴t = –+ 0 –2 = –2 . --- 2分 2)当CM < PQ时,则点P在OC的延长线上, ∵CM∥PQ,CM = PQ, ∴点Q纵坐标为点M纵坐标的2倍,即+1=2´2, 解得: x = ±. ---2分 当x = –时,得t = –––2 = –8 –, 当x =时, 得t =–8. ---2分 14.(兰州市 本题满分11分)如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0) (1)当x取何值时,该抛物线的最大值是多少? (2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示). ① 当时,判断点P是否在直线ME上,并说明理由; ② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由. 图1 第28题图 图2 解:(1)因抛物线经过坐标原点O(0,0)和点E(4,0) 故可得c=0,b=4 所以抛物线的解析式为…………………………………………1分 由 得当x=2时,该抛物线的最大值是4. …………………………………………2分 (2)① 点P不在直线ME上. 已知M点的坐标为(2,4),E点的坐标为(4,0), 设直线ME的关系式为y=kx+b. 于是得 ,解得 所以直线ME的关系式为y=-2x+8. …………………………………………3分 由已知条件易得,当时,OA=AP=,…………………4分 ∵ P点的坐标不满足直线ME的关系式y=-2x+8. [来源:Zxxk.Com] ∴ 当时,点P不在直线ME上. ……………………………………5分 ②以P、N、C、D为顶点的多边形面积可能为5 ∵ 点A在x轴的非负半轴上,且N在抛物线上, ∴ OA=AP=t. ∴ 点P,N的坐标分别为(t,t)、(t,-t 2+4t) ………………………6分 ∴ AN=-t 2+4t (0≤t≤3) , ∴ AN-AP=(-t 2+4 t)- t=-t 2+3 t=t(3-t)≥0 , ∴ PN=-t 2+3 t ………………………………………………………………………7分 (ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴ S=DC·AD=×3×2=3. (ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形 ∵ PN∥CD,AD⊥CD, ∴ S=(CD+PN)·AD=[3+(-t 2+3 t)]×2=-t 2+3 t+3……………8分 当-t 2+3 t+3=5时,解得t=1、2………………………………………9分 而1、2都在0≤t≤3范围内,故以P、N、C、D为顶点的多边形面积为5 综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5, 当t=1时,此时N点的坐标(1,3)………………………………………10分 当t=2时,此时N点的坐标(2,4)………………………………………11分 说明:(ⅱ)中的关系式,当t=0和t=3时也适合.(故在阅卷时没有(ⅰ),只有(ⅱ)也可以,不扣分) 15.(盐城市本题满分12分)已知:函数y=ax2+x+1的图象与x轴只有一个公共点. (1)求这个函数关系式; (2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标; (3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上,若在抛物线上,求出M点的坐标;若不在,请说明理由. A x y O B 1 -2 1 A x y O B P M C Q E D 解:(1)当a = 0时,y = x+1,图象与x轴只有一个公共点………(1分) 当a≠0时,△=1- 4a=0,a = ,此时,图象与x轴只有一个公共点. ∴函数的解析式为:y=x+1 或`y=x2+x+1……(3分) (2)设P为二次函数图象上的一点,过点P作PC⊥x 轴于点C. ∵是二次函数,由(1)知该函数关系式为: y=x2+x+1,则顶点为B(-2,0),图象与y轴的交点 坐标为A(0,1)………(4分) ∵以PB为直径的圆与直线AB相切于点B ∴PB⊥AB 则∠PBC=∠BAO ∴Rt△PCB∽Rt△BOA ∴,故PC=2BC,……………………………………………………(5分) 设P点的坐标为(x,y),∵∠ABO是锐角,∠PBA是直角,∴∠PBO是钝角,∴x<-2 ∴BC=-2-x,PC=-4-2x,即y=-4-2x, P点的坐标为(x,-4-2x) ∵点P在二次函数y=x2+x+1的图象上,∴-4-2x=x2+x+1…………………(6分) 解之得:x1=-2,x2=-10 ∵x<-2 ∴x=-10,∴P点的坐标为:(-10,16)…………………………………(7分) (3)点M不在抛物线上…………………………………………… (8分) 由(2)知:C为圆与x 轴的另一交点,连接CM,CM与直线PB的交点为Q,过点M作x轴的垂线,垂足为D,取CD的中点E,连接QE,则CM⊥PB,且CQ=MQ ∴QE∥MD,QE=MD,QE⊥CE ∵CM⊥PB,QE⊥CE PC⊥x 轴 ∴∠QCE=∠EQB=∠CPB ∴tan∠QCE= tan∠EQB= tan∠CPB = CE=2QE=2×2BE=4BE,又CB=8,故BE=,QE= ∴Q点的坐标为(-,) 可求得M点的坐标为(,)…………………………………………………(11分) ∵=≠ ∴C点关于直线PB的对称点M不在抛物线上……………………(12分) (其它解法,仿此得分) B F A P E O x y (第24题图) 16. (金华卷)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为1,,2 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以 (长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动. 请解答下列问题: (1)过A,B两点的直线解析式是 ▲ ; (2)当t﹦4时,点P的坐标为 ▲ ;当t ﹦ ▲ ,点P与点E重合; (3)① 作点P关于直线EF的对称点P′. 在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少? ② 当t﹦2时,是否存在着点Q,使得△FEQ ∽△BEP ?若存在, 求出点Q的坐标;若不存在,请说明理由. 解:(1);………4分 (2)(0,),;……4分(各2分)B F A P E O x y G P′ P′ (图1) (3)①当点在线段上时,过作⊥轴,为垂足(如图1) ∵,,∠∠90° ∴△≌△,∴﹒ 又∵,∠60°,∴ B F A P E O x y M P′ H (图2) 而,∴, 由得 ;…………………1分 当点P在线段上时,形成的是三角形,不存在菱形; 当点P在线段上时, 过P作⊥,⊥,、分别为垂足(如图2) ∵,∴,∴ ∴, 又∵ 在Rt△中, 即,解得.…………………………………………………1分 B F A P E O x Q′ B′ Q C C1 D1 (图3) y ②存在﹒理由如下: ∵,∴,, 将△绕点顺时针方向旋转90°,得到 △(如图3) ∵⊥,∴点在直线上, C点坐标为(,-1) 过作∥,交于点Q, 则△∽△ 由,可得Q的坐标为(-,)………………………1 分 根据对称性可得,Q关于直线EF的对称点(-,)也符合条件.……1分 17.( 绍兴市)如图,设抛物线C1:, C2:,C1与C2的交点为A, B,点A的坐标是,点B的横坐标是-2. 第24题图 (1)求的值及点B的坐标; (2)点D在线段AB上,过D作x轴的垂线,垂足为点H, 在DH的右侧作正三角形DHG. 记过C2顶点M的 直线为,且与x轴交于点N. ① 若过△DHG的顶点G,点D的坐标为 (1, 2),求点N的横坐标; ② 若与△DHG的边DG相交,求点N的横 坐标的取值范围. 解:(1)∵ 点A在抛物线C1上,∴ 把点A坐标代入得 =1. ∴ 抛物线C1的解析式为, 设B(-2,b), ∴ b=-4, ∴ B(-2,-4) . (2)①如图1, ∵ M(1, 5),D(1, 2), 且DH⊥x轴,∴ 点M在DH上,MH=5. 过点G作GE⊥DH,垂足为E, 由△DHG是正三角形,可得EG=, EH=1, 第24题图1 ∴ ME=4. 设N ( x, 0 ), 则 NH=x-1, 由△MEG∽△MHN,得 , ∴ , ∴ , ∴ 点N的横坐标为. 第24题图2 ② 当点D移到与点A重合时,如图2, 直线与DG交于点G,此时点N的横坐标最大. 过点G,M作x轴的垂线,垂足分别为点Q,F, 设N(x,0), ∵ A (2, 4), ∴ G (, 2), ∴ NQ=,NF =, GQ=2, MF =5. ∵ △NGQ∽△NMF, ∴ , 第24题图3 图4 ∴ , ∴ . 当点D移到与点B重合时,如图3, 直线与DG交于点D,即点B, 此时点N的横坐标最小. ∵ B(-2, -4), ∴ H(-2, 0), D(-2, -4), 设N(x,0), ∵ △BHN∽△MFN, ∴ , ∴ , ∴ . ∴ 点N横坐标的范围为 ≤x≤. 18. (丽水市卷)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转. O y x C B A (第24题) 1 1 -1 -1 (1) 当点B在第一象限,纵坐标是时,求点B的横坐标; (2) 如果抛物线(a≠0)的对称轴经过点C,请你探究: ① 当,,时,A,B两点是否都 在这条抛物线上?并说明理由; ② 设b=-2am,是否存在这样的m的值,使A,B两点不 可能同时在这条抛物线上?若存在,直接写出m的值; 若不存在,请说明理由. 解: O y x C B A (甲) 1 1 -1 -1 . ……1分 由此,可求得点C的坐标为(,), ……1分 点A的坐标为(,), ∵ A,B两点关于原点对称, O y x C B A (乙) 1 1 -1 -1 ∴ 点B的坐标为(,). 将点A的横坐标代入(*)式右边,计算得,即等于点A的纵坐标; 将点B的横坐标代入(*)式右边,计算得,即等于点B的纵坐标. ∴ 在这种情况下,A,B两点都在抛物线上. ……2分 情况2:设点C在第四象限(如图乙),则点C的坐标为(,-), 点A的坐标为(,),点B的坐标为(,). 经计算,A,B两点都不在这条抛物线上. ……1分 (情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上) ② 存在.m的值是1或-1. ……2分 (,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1时,点C在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上) 19.(益阳市)如图9,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3). (1)求经过A、B、C三点的抛物线的解析式; (2)过C点作CD平行于轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标; (3)若抛物线的顶点为P,连结PC、PD,判断四边形CEDP的形状,并说明理由. 解:⑴ 由于抛物线经过点,可设抛物线的解析式为 ,则, 解得 ∴抛物线的解析式为 ……………………………4分 ⑵ 的坐标为 ……………………………5分 直线的解析式为 直线的解析式为 由 求得交点的坐标为 ……………………………8分 ⑶ 连结交于,的坐标为 又∵, ∴,且 ∴四边形是菱形 ……………………………12分 20.(丹东市)如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4). (1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C); (2)求出过A,B,C三点的抛物线的表达式; (3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由; (4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由. 解:(1) 利用中心对称性质,画出梯形OABC. 1分 ∵A,B,C三点与M,N,H分别关于点O中心对称, ∴A(0,4),B(6,4),C(8,0) 3分 (写错一个点的坐标扣1分) O M N H A C E F D B ↑ → -8 (-6,-4) x y (2)设过A,B,C三点的抛物线关系式为, ∵抛物线过点A(0,4), ∴.则抛物线关系式为. 4分 将B(6,4), C(8,0)两点坐标代入关系式,得 5分 解得 6分 所求抛物线关系式为:. 7分 (3)∵OA=4,OC=8,∴AF=4-m,OE=8-m. 8分 ∴ OA(AB+OC)AF·AGOE·OFCE·OA ( 0<<4) 10分 ∵. ∴当时,S的取最小值. 又∵0<m<4,∴不存在m值,使S的取得最小值. 12分 (4)当时,GB=GF,当时,BE=BG. 14分 21.(威海市12分) (1)探究新知: ①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点. A B D C M N 图 ① 求证:△ABM与△ABN的面积相等. ②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由. C 图 ② A B D M F E G (2)结论应用: 如图③,抛物线的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由. ﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚ A 图 ③ C D B O x y 解:﹙1﹚①证明:分别过点M,N作 ME⊥AB,NF⊥AB,垂足分别为点E,F. A B D C M N 图 ① E F ∵ AD∥BC,AD=BC, ∴ 四边形ABCD为平行四边形. ∴ AB∥CD. ∴ ME= NF. ∵S△ABM=,S△ABN=, ∴ S△ABM= S△ABN. ……………………………………………………………………1分 ②相等.理由如下:分别过点D,E作DH⊥AB,EK⊥AB,垂足分别为H,K. H C 图 ② A B D M F E G K 则∠DHA=∠EKB=90°. ∵ AD∥BE, ∴ ∠DAH=∠EBK. ∵ AD=BE, ∴ △DAH≌△EBK. ∴ DH=EK. ……………………………2分 ∵ CD∥AB∥EF, ∴S△ABM=,S△ABG=, ∴ S△ABM= S△ABG. …………………………………………………………………3分 ﹙2﹚答:存在. …………………………………………………………………………4分 解:因为抛物线的顶点坐标是C(1,4),所以,可设抛物线的表达式为. 又因为抛物线经过点A(3,0),将其坐标代入上式,得,解得. ∴ 该抛物线的表达式为,即. ………………………5分 ∴ D点坐标为(0,3). 设直线AD的表达式为,代入点A的坐标,得,解得. ∴ 直线AD的表达式为. 过C点作CG⊥x轴,垂足为G,交AD于点H.则H点的纵坐标为. ∴ CH=CG-HG=4-2=2. …………………………………………………………6分 设点E的横坐标为m,则点E的纵坐标为. 过E点作EF⊥x轴,垂足为F,交AD于点P,则点P的纵坐标为,EF∥CG. A 图 ③-1 C D B O x y H P G F P E 由﹙1﹚可知:若EP=CH,则△ADE与△ADC的面积相等. ①若E点在直线AD的上方﹙如图③-1﹚, 则PF=,EF=. ∴ EP=EF-PF==. ∴ . 解得,. ……………………………7分 当时,PF=3-2=1,EF=1+2=3. ∴ E点坐标为(2,3). 同理 当m=1时,E点坐标为(1,4),与C点重合. ………………………………8分 ②若E点在直线AD的下方﹙如图③-2,③-3﹚, 则. ……………………………………………9分 ∴.解得,. ………………………………10分 当时,E点的纵坐标为; 当时,E点的纵坐标为. ∴ 在抛物线上存在除点C以外的点E,使得△ADE与△ACD的面积相等,E点的坐标为E1(2,3);;. ………………12分 ﹙其他解法可酌情处理﹚ A 图③-3 C D B O x y H P G F P E A 图③-2 C D B O x y H P G F P E 22.( 湖北省恩施自治州 12分) 如图11,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的表达式. (2)连结PO、PC,并把△POC沿CO翻折,得到四边形POPC, 那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由. (3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积. 图11 解:(1)将B、C两点的坐标代入得 ……………………2分 解得: 所以二次函数的表达式为: ……………………………3分 (2)存在点P,使四边形POPC为菱形.设P点坐标为(x,), PP交CO于E 若四边形POPC是菱形,则有PC=PO. 连结PP 则PE⊥CO于E, ∴OE=EC= ∴=.…………………6分 ∴= 解得=,=(不合题意,舍去) ∴P点的坐标为(,)…………………………8分 (3)过点P作轴的平行线与BC交于点Q,与OB交于点F,设P(x,), 易得,直线BC的解析式为 则Q点的坐标为(x,x-3). = ……………10分 当时,四边形ABPC的面积最大 此时P点的坐标为,四边形ABPC的 面积. ………………12分 23.(河南省11分)在平面直角坐标系中,已知抛物线经过A,B,C 三点. (1)求抛物线的解析式; (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值. (3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标. 24.(贵州省遵义市14分)如图,已知抛物线的顶点坐 (27题图) 标为Q,且与轴交于点C,与轴交于A、B两 点(点A在点B的右侧),点P是该抛物线上一动点,从点C 沿抛物线向点A运动(点P与A不重合),过点P作PD∥轴, 交AC于点D. (1)求该抛物线的函数关系式; (2)当△ADP是直角三角形时,求点P的坐标; (3)在问题(2)的结论下,若点E在轴上,点F在抛物线上, 问是否存在以A、P、E、F为顶点的平行四边形?若存在, 求点F的坐标;若不存在,请说明理由. 解:(1)(3分) ∵抛物线的顶点为Q(2,-1) ∴设 将C(0,3)代入上式,得 ∴, 即 (2)(7分)分两种情况: ①(3分)当点P1为直角顶点时,点P1与点B重合(如图) 令=0, 得 解之得, ∵点A在点B的右边, ∴B(1,0), A(3,0) ∴P1(1,0) ②(4分)解:当点A为△APD2的直角顶点是(如图) ∵OA=OC, ∠AOC=, ∴∠OAD2= 当∠D2AP2=时, ∠OAP2=, ∴AO平分∠D2AP2 又∵P2D2∥轴, ∴P2D2⊥AO, ∴P2、D2关于轴对称. 设直线AC的函数关系式为 将A(3,0), C(0,3)代入上式得 , ∴ ∴ ∵D2在上, P2在上, ∴设D2(,), P2(,) ∴()+()=0 , ∴, (舍) ∴当=2时, ==-1 ∴P2的坐标为P2(2,-1)(即为抛物线顶点) ∴P点坐标为P1(1,0), P2(2,-1) (3)(4分)解: 由题(2)知,当点P的坐标为P1(1,0)时,不能构成平行四边形 当点P的坐标为P2(2,-1)(即顶点Q)时, 平移直线AP(如图)交轴于点E,交抛物线于点F. 当AP=FE时,四边形PAFE是平行四边形 ∵P(2,-1), ∴可令F(,1) ∴ 解之得: , ∴F点有两点,即F1(,1), F2(,1) 25.(龙岩市14分)如图①,将直角边长为的等腰直角三角形ABC绕其直角顶点C顺时针旋转α角(0°<α<90°),得△A1B1C,A1C交AB于点D,A1B1分别交于BC、AB于点E、F,连接AB1. (1)求证:△ADC∽△A1DF; (2)若α=30°,求∠AB1A1的度数; (3)如图②,当α=45°时,将△A1B1C沿C→A方向平移得△A2B2C2,A2C2交AB于点G,B2C2交BC于点H,设CC2=x(0<x<),△ABC与△A2B2C2的重叠部分面积为S,试求S与x的函数关系式. 图① 图② 备用图 (第25题图) 解: (1)证明:如图①,根据旋转变换的性质易知 ∠CAD=∠FA1D 1分 ∵ ∠1=∠2 2分 ∴ △ADC∽△A1DF 4分 (2)解: 图① (法一) ∵ CA=CA1=CB=CB1= ∵ 点A、A1、B、B1均在以C为圆心 半径为的圆上, 2分 ∴ ∠AB1A1= 4分 (法二) 如图①, ∵ AC=B1C ∴ ∠4=∠3 1分 ∵ ,∠A1CB1=90° ∴ ∠ACB1=120° 2分 ∴ ∠4==30° 3分 ∴ ∠AB1A1=∠CB1A1∠4=45°30°=15° 4分 (法三)如图①, ∵ AC=B1C ∴ ∠4=∠3 1分 ∵ ∠CAB=∠CB1A1 ∴ ∠CAB∠3=∠CB1A1∠4 即 ∠B1AB=∠AB1A1 2分 ∵ ∠5=∠B1AB+∠AB1A1 ∴ ∠5=2∠AB1A1 3分 ∵ △ADC∽△A1DF ∴ ∠5= ∴ ∠AB1A1= 4分 (3)解:△A1B1C在平移的过程中,易证得△AC2G、△HB2E、△A2FG、△C2HC、 △FBE均是等腰直角三角形,四边形AC2B2F是平行四边形 1分 ∵ AB==2 ∴ 当α=45°时,CE=CD=AB=1 情形①:当0<x<1时(如图②所示), △A2B2C2与△ABC的重叠部分为五边形C2HEFG 2分 (法一) S五边形C2HEFG=S平行四边形AC2B2FSRt△AC2GSRt△HB2E ∵ C2C=x ∴ CH=x,AC2=,B2E=HE= ∴ AG=C2G=AC2= ∴ S平行四边形AC2B2F=AC2·CE=()·1= 图② SRt△AC2G=·AG2= SRt△HB2E=·B2E2= 3分 ∴ S五边形C2HEFG= = 4分 (法二) S五边形C2HEFG= SRt△A2B2C2SRt△A2FGSRt△HB2E ∵ C2C=x ∴ AC2=,B2E= ∴ C2G=AC2= A2G=A2C2C2G = ∴ SRt△A2B2C2=A2==1 SRt△A2FG=A2G2= SRt△HB2E =B2E2= 3分 ∴ S五边形C2HEFG= = 4分 (法三) S五边形C2HEFG= SRt△ABCSRt△AC2GSRt△C2HCSRt△FBE ∵ C2C=x ∴ AC2=,CH=,BE= ∴ AG=C2G=AC2= ∴ SRt△ABC=A==1 SRt△ AC2G =AG2= SRt△C2HC =C2C2= SRt△FBE =BE2= 3分 ∴ S五边形C2HEFG= = 4分 情形②:当1≤x<时(如图③所示), △A2B2C2与△ABC的重叠部分为直角梯形C2B2FG 5分 (法一) S直角梯形C2B2FG =S平行四边形C2B2FASRt△AC2G =AC2·CEAG2 = = 6分 (法二) S直角梯形C2B2FG = SRt△A2B2C2SRt△A2FG 图③ = = 6分 26. (湖南省郴州市)如图(1),抛物线与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线与抛物线交于点B、C. (1)求点A的坐标; (2)当b=0时(如图(2)),与的面积大小关系如何?当时,上述关系还成立吗,为什么? (3)是否存在这样的b,使得是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由. 第26题 图(1) 图(2) 解: (1)将x=0,代入抛物线解析式,得点A的坐标为(0,-4)………..2分 (2)当b=0时,直线为,由解得, 所以B、C的坐标分别为(-2,-2),(2,2) , 所以(利用同底等高说明面积相等亦可) ……..4分 当时,仍有成立. 理由如下 由,解得, 所以B、C的坐标分别为(-,-+b),(,+b), 作轴,轴,垂足分别为F、G,则, 而和是同底的两个三角形, 所以. …………………..6分 (3)存在这样的b. 因为 所以 所以,即E为BC的中点 所以当OE=CE时,为直角三角形 …………………..8分 因为 所以 ,而 所以,解得, 所以当b=4或-2时,ΔOBC为直角三角形. ………………….10分 27. (湖南省怀化市本题满分10分) 图9是二次函数的图象,其顶点坐标为M(1,-4). (1)求出图象与轴的交点A,B的坐标; 图9 (2)在二次函数的图象上是否存在点P, 使,若存在,求出P点的 坐标;若不存在,请说明理由; (3)将二次函数的图象在轴下方的部分 沿轴翻折,图象的其余部分保持不变, 得到一个新的图象,请你结合这个 新的图象回答:当直线与此 图象有两个公共点时,的取值范围. 解:(1) 因为M(1,-4) 是二次函数的顶点坐标, 所以 ………………………………………2分 令解之得. ∴A,B两点的坐标分别为A(-1,0),B(3,0)………………………………4分 (2) 在二次函数的图象上存在点P,使…………………………5分 设则,又, ∴ 图1 ∵二次函数的最小值为-4,∴. 当时,. 故P点坐标为(-2,5)或(4,5)……………7分 (3)如图1,当直线经过A点时,可得……………8分 当直线经过B点时,可得…………9分 由图可知符合题意的的取值范围为……10分 28.(湖南省株洲市本题满分10分)在平面直角坐标系中,抛物线过原点O,且与轴交于另一点,其顶点为.孔明同学用一把宽为带刻度的矩形直尺对抛物线进行如下测量: ① 量得; ② 把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图1),测得抛物线与直尺右边的交点的刻度读数为. 请完成下列问题: (1)写出抛物线的对称轴; (2)求抛物线的解析式; (3)将图中的直尺(足够长)沿水平方向向右平移到点的右边(如图2),直尺的两边交轴于点、,交抛物线于点、.求证:. 图1 图2 · B 解:(1) ……… 2分 (2)设抛物线的解析式为:,当时,,即;当时,,即,依题意得:,解得:. ∴抛物线的解析式为:. ……… 6分 (3)方法一:过点作,垂足为,设, ,得: ① ② 又,得,分别代入①、②得:, ∴ 得: 又 ∴ ………10分 方法二:过点作,垂足为,设,则,得: ∵ ∴ ………10分 2010年中考数学试题压轴题汇编(二) 29.(荆门市本题满分12分)已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0) (1)求二次函数的解析式; (2)求四边形BDEC的面积S; (3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由. 第24题图 解:(1)将B(0,1),D(1,0)的坐标代入y=x2+bx+c得 得解析式y=x2-x+1……………………………………………………3分 (2)设C(x0,y0),则有 解得∴C(4,3).……………………………………………6分 由图可知:S=S△ACE-S△ABD.又由对称轴为x=可知E(2,0). ∴S=AE·y0-AD×OB=×4×3-×3×1=…………………………………8分 第24题图 当P为直角顶点时,如图:过C作CF⊥x轴于F. ∵Rt△BOP∽Rt△PFC,∴.即. 整理得a2-4a+3=0.解得a=1或a=3 ∴所求的点P的坐标为(1,0)或(3,0) 综上所述:满足条件的点P共有二个………………………………………………………12分 (3)设符合条件的点P存在,令P(a,0): 30.(济宁市10分) 如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧). 已知点坐标为(,). (1)求此抛物线的解析式; (2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明; (第23题) (3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积. 解:(1)设抛物线为. ∵抛物线经过点(0,3),∴.∴. ∴抛物线为. ……………………………3分 (2) 答:与⊙相交. …………………………………………………………………4分 证明:当时,,. ∴为(2,0),为(6,0).∴. 设⊙与相切于点,连接,则. ∵,∴. 又∵,∴.∴∽. ∴.∴.∴.…………………………6分 ∵抛物线的对称轴为,∴点到的距离为2. ∴抛物线的对称轴与⊙相交. ……………………………………………7分 (第23题) (3) 解:如图,过点作平行于轴的直线交于点. 可求出的解析式为.…………………………………………8分 设点的坐标为(,),则点的坐标为(,). ∴. ∵, ∴当时,的面积最大为. 此时,点的坐标为(3,). …………………………………………10分 31.(中山市)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题: (1)说明△FMN∽△QWP; (2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形? (3)问当x为何值时,线段MN最短?求此时MN的值. 第22题图(2) A B C D F 第22题图(1) A B M C F D N W P Q M N W P Q 32.(青岛市本小题满分12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm. 如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题: (1)当t为何值时,点A在线段PQ的垂直平分线上? (2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由. A D B C F ( E ) 图(1) A D B C F E 图(2) P Q (3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.(图(3)供同学们做题使用) A B C 图(3) 解:(1)∵点A在线段PQ的垂直平分线上, ∴AP = AQ. ∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°, ∴∠EQC = 45°. 图(2) Q A D B C F E P M ∴∠DEF =∠EQC. ∴CE = CQ. 由题意知:CE = t,BP =2 t, ∴CQ = t. ∴AQ = 8-t. 在Rt△ABC中,由勾股定理得:AB = 10 cm . 则AP = 10-2 t. ∴10-2 t = 8-t. 解得:t = 2. 答:当t = 2 s时,点A在线段PQ的垂直平分线上. 4分 (2)过P作,交BE于M, ∴. 在Rt△ABC和Rt△BPM中,, ∴ . ∴PM = . ∵BC = 6 cm,CE = t, ∴ BE = 6-t. ∴y = S△ABC-S△BPE =-= - = = . ∵,∴抛物线开口向上. ∴当t = 3时,y最小=. 答:当t = 3s时,四边形APEC的面积最小,最小面积为cm2. 8分 (3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上. 过P作,交AC于N, C E A D B F 图(3) P Q N ∴. ∵,∴△PAN ∽△BAC. ∴. ∴. ∴,. ∵NQ = AQ-AN, ∴NQ = 8-t-() = . ∵∠ACB = 90°,B、C(E)、F在同一条直线上, ∴∠QCF = 90°,∠QCF = ∠PNQ. ∵∠FQC = ∠PQN, ∴△QCF∽△QNP . ∴ . ∴ . ∵ ∴ 解得:t = 1. 答:当t = 1s,点P、Q、F三点在同一条直线上. 12分 33、(南充市)已知抛物线上有不同的两点E和F. (1)求抛物线的解析式. (2)如图,抛物线与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式. (3)当m,n为何值时,∠PMQ的边过点F. B A M C D O P Q x y 解:(1)抛物线的对称轴为. ……..(1分) ∵ 抛物线上不同两个点E和F的纵坐标相同, ∴ 点E和点F关于抛物线对称轴对称,则 ,且k≠-2. ∴ 抛物线的解析式为. ……..(2分) (2)抛物线与x轴的交点为A(4,0),与y轴的交点为B(0,4), ∴ AB=,AM=BM=. ……..(3分) 在∠PMQ绕点M在AB同侧旋转过程中,∠MBC=∠DAM=∠PMQ=45°, 在△BCM中,∠BMC+∠BCM+∠MBC=180°,即∠BMC+∠BCM=135°, 在直线AB上,∠BMC+∠PMQ+∠AMD=180°,即∠BMC+∠AMD=135°. ∴ ∠BCM=∠AMD. 故 △BCM∽△AMD. ……..(4分) ∴ ,即 ,. 故n和m之间的函数关系式为(m>0). ……..(5分) (3)∵ F在上, ∴ , 化简得,,∴ k1=1,k2=3. 即F1(-2,0)或F2(-4,-8). ……..(6分) ①MF过M(2,2)和F1(-2,0),设MF为, 则 解得, ∴ 直线MF的解析式为. 直线MF与x轴交点为(-2,0),与y轴交点为(0,1). 若MP过点F(-2,0),则n=4-1=3,m=; 若MQ过点F(-2,0),则m=4-(-2)=6,n=. ……..(7分) ②MF过M(2,2)和F1(-4,-8),设MF为, 则 解得, ∴ 直线MF的解析式为. 直线MF与x轴交点为(,0),与y轴交点为(0,). 若MP过点F(-4,-8),则n=4-()=,m=; 若MQ过点F(-4,-8),则m=4-=,n=. ……..(8分) 故当 或时,∠PMQ的边过点F. 34. ((衢州卷)本题12分) O y x C B A 1 1 -1 -1 △ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转. (1) 当点B在第一象限,纵坐标是时,求点B的横坐标; (2) 如果抛物线(a≠0)的对称轴经过点C,请你探究: ① 当,,时,A,B两点是否都在这条抛物线上?并说明理由; ② 设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由. O y x C B A (甲) 1 1 -1 -1 . ……1分 由此,可求得点C的坐标为(,), ……1分 点A的坐标为(,), ∵ A,B两点关于原点对称, O y x C B A (乙) 1 1 -1 -1 ∴ 点B的坐标为(,). 将点A的横坐标代入(*)式右边,计算得,即等于点A的纵坐标; 将点B的横坐标代入(*)式右边,计算得,即等于点B的纵坐标. ∴ 在这种情况下,A,B两点都在抛物线上. ……2分 情况2:设点C在第四象限(如图乙),则点C的坐标为(,-), 解:(1) ∵ 点O是AB的中点, ∴ . ……1分 设点B的横坐标是x(x>0),则, ……1分 解得 ,(舍去). ∴ 点B的横坐标是. ……2分 (2) ① 当,,时,得 ……(*) . ……1分 以下分两种情况讨论. 情况1:设点C在第一象限(如图甲),则点C的横坐标为, 点A的坐标为(,),点B的坐标为(,). 经计算,A,B两点都不在这条抛物线上. ……1分 (情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上) ② 存在.m的值是1或-1. ……2分 (,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1时,点C在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上) 35.(莱芜市本题满分12分) 如图,在平面直角坐标系中,已知抛物线交轴于两点,交轴于点. (1)求此抛物线的解析式; (2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交轴于点E、F两点,求劣弧EF的长; (3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分. (第24题图) x y O A C B D E F 解:(1)∵抛物线经过点,,. ∴, 解得. ∴抛物线的解析式为:. …………………………3分 (2)易知抛物线的对称轴是.把x=4代入y=2x得y=8,∴点D的坐标为(4,8). ∵⊙D与x轴相切,∴⊙D的半径为8. …………………………4分 连结DE、DF,作DM⊥y轴,垂足为点M. 在Rt△MFD中,FD=8,MD=4.∴cos∠MDF=. ∴∠MDF=60°,∴∠EDF=120°. …………………………6分 ∴劣弧EF的长为: . …………………………7分 (3)设直线AC的解析式为y=kx+b. ∵直线AC经过点. ∴,解得.∴直线AC的解析式为:. ………8分 设点,PG交直线AC于N, 则点N坐标为.∵. x y O A C B D E F P G N M ∴①若PN︰GN=1︰2,则PG︰GN=3︰2,PG=GN. 即=. 解得:m1=-3, m2=2(舍去). 当m=-3时,=. ∴此时点P的坐标为. …………………………10分 ②若PN︰GN=2︰1,则PG︰GN=3︰1, PG=3GN. 即=. 解得:,(舍去).当时,=. ∴此时点P的坐标为. 综上所述,当点P坐标为或时,△PGA的面积被直线AC分成1︰2两部分. …………………12分 36. (舟山卷 本题12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转. (1) 当点B在第一象限,纵坐标是时,求点B的横坐标; (2) 如果抛物线(a≠0)的对称轴经过点C,请你探究: ① 当,,时,A,B两点是否都在这条抛物线上?并说明理由; ② 设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由. O y x C B A (第24题) 1 1 -1 -1 解:(1) ∵ 点O是AB的中点, ∴ . ……1分 设点B的横坐标是x(x>0),则, ……1分 解得 ,(舍去). ∴ 点B的横坐标是. ……2分 (2) ① 当,,时,得 ……(*) . ……1分 以下分两种情况讨论. 情况1:设点C在第一象限(如图甲),则点C的横坐标为, O y x C B A (甲) 1 1 -1 -1 . ……1分 由此,可求得点C的坐标为(,), ……1分 点A的坐标为(,), ∵ A,B两点关于原点对称, O y x C B A (乙) 1 1 -1 -1 ∴ 点B的坐标为(,). 将点A的横坐标代入(*)式右边,计算得,即等于点A的纵坐标; 将点B的横坐标代入(*)式右边,计算得,即等于点B的纵坐标. ∴ 在这种情况下,A,B两点都在抛物线上. ……2分 情况2:设点C在第四象限(如图乙),则点C的坐标为(,-), 点A的坐标为(,),点B的坐标为(,). 经计算,A,B两点都不在这条抛物线上. ……1分 (情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上) ② 存在.m的值是1或-1. ……2分 (,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1时,点C在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上) 37.(2010.十堰)(本小题满分10分)已知关于x的方程mx2-(3m-1)x+2m-2=0 (1)求证:无论m取任何实数时,方程恒有实数根. (2)若关于x的二次函数y= mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式. (3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围. 解:(1)分两种情况讨论: ①当m=0 时,方程为x-2=0,∴x=2 方程有实数根 ②当m≠0时,则一元二次方程的根的判别式 △=[-(3m-1)]2-4m(2m-2)=m2+2m+1=(m+1)2≥0 不论m为何实数,△≥0成立,∴方程恒有实数根 综合①②,可知m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根. (2)设x1,x2为抛物线y= mx2-(3m-1)x+2m-2与x轴交点的横坐标. 则有x1+x2=,x1·x2= 由| x1-x2|====, 由| x1-x2|=2得=2,∴=2或=-2 ∴m=1或m= ∴所求抛物线的解析式为:y1=x2-2x或y2=x2+2x- 即y1= x(x-2)或y2=(x-2)(x-4)其图象如右图所示. (3)在(2)的条件下,直线y=x+b与抛物线y1,y2组成的图象只有两个交点,结合图象,求b的取值范围. ,当y1=y时,得x2-3x-b=0,△=9+4b=0,解得b=-; 同理,可得△=9-4(8+3b)=0,得b=-. 观察函数图象可知当b<-或b>-时,直线y=x+b与(2)中的图象只有两个交点. 由 当y1=y2时,有x=2或x=1 当x=1时,y=-1 所以过两抛物线交点(1,-1),(2,0)的直线y=x-2, 综上所述可知:当b<-或b>-或b=-2时,直线y=x+b与(2)中的图象只有两个交点. 38.(河北省本小题满分12分) 某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售. 若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150, 成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润 = 销售额-成本-广告费). 若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为 常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费). (1)当x = 1000时,y = 元/件,w内 = 元; (2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围); (3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值; (4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大? 参考公式:抛物线的顶点坐标是. 解:(1)140 57500; (2)w内 = x(y -20)- 62500 = x2+130 x, w外 = x2+(150)x. (3)当x = = 6500时,w内最大;分 由题意得 , 解得a1 = 30,a2 = 270(不合题意,舍去).所以 a = 30. (4)当x = 5000时,w内 = 337500, w外 =. 若w内 < w外,则a<32.5; 若w内 = w外,则a = 32.5; 若w内 > w外,则a>32.5. 所以,当10≤ a <32.5时,选择在国外销售; 当a = 32.5时,在国外和国内销售都一样; 当32.5< a ≤40时,选择在国内销售. 39. (德州市本题满分11分) 已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3). (1)求此函数的解析式及图象的对称轴; (2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒. ①当t为何值时,四边形ABPQ为等腰梯形; x y O A B C P Q D E G M N F x y O A B C P Q M N 第23题图 ②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值. 解:(1)∵二次函数的图象经过点C(0,-3), ∴c =-3. 将点A(3,0),B(2,-3)代入得 解得:a=1,b=-2. ∴.-------------------2分 配方得:,所以对称轴为x=1.-------------------3分 (2) 由题意可知:BP= OQ=0.1t. ∵点B,点C的纵坐标相等, ∴BC∥OA. 过点B,点P作BD⊥OA,PE⊥OA,垂足分别为D,E. 要使四边形ABPQ为等腰梯形,只需PQ=AB. 即QE=AD=1. 又QE=OE-OQ=(2-0.1t)-0.1t=2-0.2t, ∴2-0.2t=1. 解得t=5. 即t=5秒时,四边形ABPQ为等腰梯形.-------------------6分 ②设对称轴与BC,x轴的交点分别为F,G. ∵对称轴x=1是线段BC的垂直平分线, ∴BF=CF=OG=1. 又∵BP=OQ, ∴PF=QG. 又∵∠PMF=∠QMG, ∴△MFP≌△MGQ. ∴MF=MG. ∴点M为FG的中点 -------------------8分 ∴S=, =. 由=. . ∴S=.-------------------10分 又BC=2,OA=3, ∴点P运动到点C时停止运动,需要20秒. ∴0查看更多