2018年河南省中考数学试卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018年河南省中考数学试卷

‎2018年河南省中考数学试卷 ‎(满分120分,考试时间100分钟)‎ 一、选择题(每小题3分,共30分)‎ 1. 的相反数是( )‎ A. B. C. D.‎ 2. 今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元.数据“214.7亿”用科学记数法表示为( )‎ A.2.147×102 B.0.2147×103 C.2.147×1010 D.0.2147×1011‎ 3. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )‎ A.厉 B.害 C.了 D.我 4. 下列运算正确的是( )‎ A. B.‎ C. D.‎ 5. 河南省游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )‎ A.中位数是12.7% B.众数是15.3%‎ C.平均数是15.98% D.方差是0‎ 6. ‎《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为( )‎ A. B.‎ C. D.‎ 7. 下列一元二次方程中,有两个不相等实数根的是( )‎ A. B.‎ C. D.‎ 1. 现有4张卡片,其中3张卡片正面上的图案是“♢”,1张卡片正面上的图案是“♣”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( )‎ A. B. C. D.‎ 2. 如图,已知□AOBC的顶点O(0,0),A(-1,2),点B在x轴正半轴上.按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在 ‎∠AOB内交于点F;③作射线OF,交边AC于点G.则点G的坐标为( )‎ A. ‎ B. ‎ C. ‎ D.‎ 3. 如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1 cm/s的速度匀速运动到点B.图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )‎ A. B.2 C. D.‎ 图1 图2‎ 二、填空题(每小题3分,共15分)‎ 4. 计算:__________.‎ 5. 如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为____________.‎ 1. 不等式组的最小整数解是___________.‎ 2. 如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A′B′C′,其中点B的运动路径为,则图中阴影部分的面积为____________.‎ 3. 如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称.D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为____________.‎ ‎ ‎ 三、解答题(本大题共8个小题,满分75分)‎ 4. ‎(8分)共化简,再求值:,其中.‎ 1. ‎(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病,呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.‎ 治理杨絮——您选哪一项?(单选)‎ A.减少杨树新面积,控制杨树每年的栽种量 B.调整树种结构,逐渐更换现有杨树 C.选育无絮杨品种,并推广种植 D.对雌性杨树注射生物干扰素,避免产生飞絮 E.其他 根据以上统计图,解答下列问题:‎ ‎(1)本次接受调查的市民共有__________人;‎ ‎(2)扇形统计图中,扇形E的圆心角度数是__________;‎ ‎(3)请补全条形统计图;‎ ‎(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.‎ 1. ‎(9分)如图,反比例函数的图象过格点(网格线的交点)P.‎ ‎(1)求反比例函数的解析式;‎ ‎(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:‎ ‎①四个顶点均在格点上,且其中两个顶点分别是点O,点P;‎ ‎②矩形的面积等于k的值.‎ 2. ‎(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.‎ ‎(1)求证:CE=EF;‎ ‎(2)连接AF并延长,交⊙O于点G.填空:‎ ‎①当∠D的度数为_________时,四边形ECFG为菱形;‎ ‎②当∠D的度数为_________时,四边形ECOG为正方形.‎ ‎ ‎ 3. ‎(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动 员可根据自已的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.‎ 如图所示,底座上A,B两点间的距离为90 cm.低杠上点C到直线AB的距离CE的长为155 cm,高杠上点D到直线AB的距离DF的长为234 cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.‎ ‎(结果精确到1 cm.参考数据:sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)‎ 1. ‎(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系.关于销售单价、日销售量、日销售利润的几组对应值如下表:‎ 销售单价x(元)‎ ‎85‎ ‎95‎ ‎105‎ ‎115‎ 日销售量y(个)‎ ‎175‎ ‎125‎ ‎75‎ m 日销售利润(元)‎ ‎875‎ ‎1 875‎ ‎1 875‎ ‎875‎ 注:日销售利润=日销售量×(销售单价-成本单价)‎ ‎(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;‎ ‎(2)根据以上信息,填空:‎ 该产品的成本单价是_______元.当销售单价x=_______元时,日销售利润w最大,最大值是_________元;‎ ‎(3)公司计划开展科技创新,以降低该产品的成本.预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3 750元的销售目标,该产品的成本单价应不超过多少元?‎ 1. ‎(10分)(1)问题发现 如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:‎ ‎①的值为_____________;‎ ‎②∠AMB的度数为_____________.‎ ‎(2)类比探究 如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由.‎ ‎(3)拓展延伸 在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M.若OD=1,OB=,请直接写出当点C与点M重合时AC的长.‎ 图1 图2 备用图 1. ‎(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x-5经过点B,C.‎ ‎(1)求抛物线的解析式.‎ ‎(2)过点A的直线交直线BC于点M.‎ ‎①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;‎ ‎②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.‎ 备用图 备用图
查看更多

相关文章

您可能关注的文档