- 2021-05-10 发布 |
- 37.5 KB |
- 17页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
北师大中考复习专题讲义与习题第一专题数与式
初中数学总复习基础知识梳理 第一专题数与式 本专题包括:有理数(七上第二章) 用字母表示数(七上第三章) 整式(七下第一章) 实数(八上第二章) 因式分解(八下第二章) 分式(八下第三章) 有理数与实数: 一、实数的分类: 1、有理数:任何一个有理数总可以写成的形式,其中p、q是互质的整数,这是有理数的重要特征。 2、无理数:初中遇到的无理数有三种:开不尽的方根,如、;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、°等。 3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。 二、实数中的几个概念 1、相反数:只有符号不同的两个数叫做互为相反数。 (1)实数a的相反数是 -a; (2)a和b互为相反数a+b=0 2、倒数: (1)实数a(a≠0)的倒数是;(2)a和b 互为倒数;(3)注意0没有倒数 3、绝对值: (1)一个数a 的绝对值有以下三种情况: (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。 (3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。 4、n次方根 (1)平方根,算术平方根:设a≥0,称叫a的平方根,叫a的算术平方根。算术根的性质:=; (2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 (3)立方根:叫实数a的立方根。 (4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。 三、实数与数轴 1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。 2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。注:每一个有理数都可以用数轴上的唯一的点来表示,但与数轴上的点不是一一对应的关系。 四、实数大小的比较 1、在数轴上表示两个数,右边的数总比左边的数大。 2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。 五、实数的运算 1、加法: (1)同号两数相加,取原来的符号,并把它们的绝对值相加; (2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。 2、减法:减去一个数等于加上这个数的相反数。 3、乘法: (1)两数相乘,同号取正,异号取负,并把绝对值相乘。 (2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。 (3)乘法可使用乘法交换律、乘法结合律、乘法分配律。 4、除法: (1)两数相除,同号得正,异号得负,并把绝对值相除。 (2)除以一个数等于乘以这个数的倒数。 (3)0除以任何数都等于0,0不能做被除数。 5、乘方与开方:乘方与开方互为逆运算。开方运算法则:(a≥0,b≥0);(a≥0,b>0) 6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。 六、非负数的三种表示形式:a2、|a|、(a≥0);若若干个非负数的和为零,则这些非负数同时为零。 代数式 一、代数式与整式 1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者一个字母也是代数式。 2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。 3、代数式相关概念: (1)单项式:像x、7、,这种数与字母的积叫做单项式。单独一个数或字母也是单项式。 单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。 单项式的系数:单项式中的数字因数叫单项式的系数。 (2)多项式:几个单项式的和叫做多项式。 多项式的项:多项式中每一个单项式都叫多项式的项。一个多项式含有几项,就叫几项式。 多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。不含字母的项叫常数项。 (3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。 合并同类项法则:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。 去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。 4、幂的运算法则:其中m、n都是正整数 同底数幂相乘:;同底数幂相除:;幂的乘方: 积的乘方:。零指数:=1(a≠0);整指数:=1/(a≠0,p是正整数) 5、整式的运算 (1)整式的加减: 整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。 (2)整式的乘除: 单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。 单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。 多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。 单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。 多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。 乘法公式: 平方差公式:; 完全平方公式:, 二、因式分解 1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。因式分解与整式乘法互为逆运算。 2、常用的因式分解方法: (1)提取公因式法: (2)运用公式法:平方差公式:;完全平方公式: 3、因式分解的一般步骤: (1)如果多项式的各项有公因式,那么先提公因式; (2)提出公因式或无公因式可提,再考虑可否运用公式 三、分式 1、分式定义:形如的式子叫分式,其中A、B是整式,且B中含有字母。 (1)分式无意义:B=0时,分式无意义; B≠0时,分式有意义。 (2)分式的值为0:A=0,B≠0时,分式的值等于0。 (3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。方法是把分子、分母因式分解,再约去公因式。 (4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。分式运算的最终结果若是分式,一定要化为最简分式。 (5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。 (6)最简公分母:各分式的分母所有因式的最高次幂的积。 2、分式的基本性质: (1);(2) (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算: (1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。 (2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。 (3)除:除以一个分式等于乘上它的倒数式。 (4) 乘方:分式的乘方就是把分子、分母分别乘方。 1.有理数的意义 ⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数的相反数为________. 若,互为相反数,则= . ⑶ 非零实数的倒数为______. 若,互为倒数,则= . ⑷ 绝对值. ⑸ 科学记数法:把一个数表示成 的形式,其中1≤<10的数,n是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方 ⑴ 任何正数都有______个平方根,它们互为________.其中正的平方根叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数都有立方根,记为 . ⑶ . 3. 实数的分类 和 统称实数. 4. 数的乘方 ,其中叫做 ,n叫做 . (其中 0 且是 ) (其中 0) 5. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行. 6. 实数大小的比较 ⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大. ⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的. 1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示 连接而成的式子叫做代数式. 2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式 (1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数. (2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 . (3) 整式: 与 统称整式. 4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___. 5. 幂的运算性质: am·an= ; (am)n= ; am÷an=_____; (ab)n= . 6. 乘法公式: (1) ; (2)(a+b)(a-b)= ; (3) (a+b)2= ;(4)(a-b)2= . 7. 整式的除法 ⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式. ⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 . 1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止. 2. 因式分解的方法:⑴ ,⑵ , ⑶ ,⑷ . 3. 提公因式法:__________ _________. 4. 公式法: ⑴ ⑵ , ⑶ . 5. 十字相乘法: . 6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 分式:整式A除以整式B,可以表示成 的形式,如果除式B中含有 ,那么称 为分式.若 ,则 有意义;若 ,则 无意义;若 ,则 =0. 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 .用式子表示为 . 3. 约分:把一个分式的分子和分母的 约去,这种变形称为分式的约分. 4.通分:根据分式的基本性质,把异分母的分式化为 的分式,这一过程称为分式的通分. 5.分式的运算 ⑴ 加减法法则:① 同分母的分式相加减: . ② 异分母的分式相加减: . ⑵ 乘法法则: .乘方法则: . ⑶ 除法法则: . 1.二次根式的有关概念 ⑴ 式子 叫做二次根式.注意被开方数只能是 .并且根式. ⑵ 简二次根式 被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式. (3) 同类二次根式 化成最简二次根式后,被开方数 几个二次根式,叫做同类二次根式. 2.二次根式的性质 ⑴ 0; ⑵ (≥0) ⑶ ; ⑶ (); ⑷ (). 3.二次根式的运算 (1) 二次根式的加减: ①先把各个二次根式化成 ; ②再把 分别合并,合并时,仅合并 , 不变. (4) 实数的概念 1.把分别填入下面的括号中: 有理数集合:{ … } 正实数集合:{ … } 无理数集合:{ …} 负实数集合:{ … } 3.1.7-的相反数是__________,绝对值是___________. 4. 计算, ±_______, 下列说法正确的是( ) A.近似数3.9×103精确到十分位 B.按科学计数法表示的数8.04×105其原数是80400 C.把数50430保留2个有效数字得5.0×104. D.用四舍五入得到的近似数8.1780精确到0.001 5. 5.的立方根是____;4的平方根是____;的平方根是 ;的立方根为__ __. 6.若x,y满足(2x-1)2+︱y+2︱=0,那么-x³+y²=__________. 7.绝对值不小于3但小于6的负整数有_______个,他们分别是____ _______. 8.已知9y2-16=0,且y是正数,则_________. 9.如果实数a与b互为相反数,则a、b一定满足( ). A.ab = 1 B.ab =-1 C.a + b = 0 D.a-b = 0 10.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有( ). A.0个 B.1个 C.2个 D.3个 11.下列说法错误的是( ). A.相反数与本身相等的数只有0 B.倒数与本身相等的数只有1和-1 C.平方与本身相等的数只有0和1 D.立方与本身相等的数只有0和1 12.点A在数轴上距原点5个单位长度,将A点先向左移动2个单位长度,再向右移动6个单位长度,此时A点所表示的数是( ). A.–1 B.9 C. –1或9 D. 1或9 13.当a<0时,化简的结果是( ). A.2 B.-2 C.1 D.0 14.下列结论正确的是( ). A.- B. C. D. 15.若实数x与它的绝对值的和等于0,则x是( ). A. 非正数 B. 非负数 C. 非零实数 D. 负数 16.下列说法不正确的是 ( ) . A.没有最大的有理数 B.没有最小的有理数 C.有最小的正有理数 D.有绝对值最小的有理数 19.当1查看更多