- 2021-05-10 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
广西省柳州市中考数学试卷含答案解析
2017年广西省柳州市中考数学试卷 第I卷(选择题,共36分) 一、选择题(每小题3分,共12小题,共计36分) 1.(2017广西柳州,1,3分)计算:(-3)+(-3)=( ) A.-9 B.9 C.-6 D.6 2.(2017广西柳州,2,3分) 下列交通标志中,是轴对称图形的是( ) A.限制速度 B.禁止同行 C.禁止直行 D.禁止掉头 3.(2017广西柳州,3,3分)如图,这是一个机械模具,则它的主视图是( ) A. B. C. D. 4.(2017广西柳州,4,3分)现有四个看上去完全一样的纸团,每个纸团里面分别写着数字1,2,3,4,现任意抽取一个纸团,则抽到的数字是4的概率是( ) A. B. C. D.1 5.(2017广西柳州,5,3分)如图,经过直线l外一点画l的垂线,能画出( ) A.1条 B.2条 C.3条 D.4条 6.(2017广西柳州,6,3分)化简:2x-x=( ) A.2 B.1 C.2x D.x 7.(2017广西柳州,7,3分)如图,直线y=2x必过的点是( ) A.(2,1) B.(2,2) C.(-1,-1) D.(0,0) 8.(2017广西柳州,8,3分) 如图,这个五边形ABCDE的内角和等于( ) 12 A.360° B.540° C.720° D.900° 9.(2017广西柳州,9,3分)如图,在⊙O中与∠1一定相等的角是( ) A.∠2 B.∠3 C.∠4 D.∠5 10.(2017广西柳州,10,3分)计算=( ). A. B. C. D.300 11. (2017广西柳州,11,3分).化简:( ) A.-x. B. C. D. 12. (2017广西柳州,12,3分).如果有一组数据为1,2,3,4,5,则这组数据的方差为( ) A.1 B.2 C.3 D.4 第II卷(非选择题,共84分) 二、填空题(每小题3分,共18分). 13.(2017广西柳州,13,3分).如图,AB∥CD,若∠1=60°,则∠2=______°. 14.(2017广西柳州,14,3分).计算: =______. 15.(2017广西柳州,15,3分).若点A(2,2)在反比例函数(k≠0)的图像上,则k=______. 16.(2017广西柳州,16,3分)某校为了了解本届初三学生体质健康情况,从全校初三学生中随进抽取46名学生进行调查,上述抽取的样本容量为______. 17.(2017广西柳州,17,3分)如图,把这个“十字星”形图绕其中心点O旋转,当至少旋转______度后,所得图形与原图形重合. 18.(2017广西柳州,18,3分)如图,在△ABC中,D,E分别为AB,AC的中点,BE交CD于点O,连接DE.有下列结论:①DE=BC;②△BOD∽△COE;③BO=2EO;④AO的延长线经过BC的中点.其中正确的是______(填写所有正确结论的编号) 12 三、解答题(本大题共8个小题,满分66分). 19.(2017广西柳州,19,6分)解方程:2x-7=0. 20.(2017广西柳州,20,6分)如图,在平行四边形ABCD中,AB=3,BC=4,求这个平行四边形ABCD的周长.. 21.(2017广西柳州,21,6分)据查,柳州市2017年6月5日至6月9日的气象数据如下,根据数据求出这五天最高气温的平均值. 6月5日 星期一 大雨 24~32°C 6月6日 星期二 中雨 23~30°C 6月7日 星期三 多云 23~31°C 6月8日 星期四 多云 25~33°C 6月9日 星期五 多云 26~34°C 22.(2017广西柳州,22,8分)学校要组织去春游,小陈用50圆负责购买小组所需的两种食品,买第一种食品共花去了30元,剩余的钱还要买第二种食品,已知第二种食品的单价为60元/件,问:小陈最多能买第二种食品多少件? 23.(2017广西柳州,23,8分)如图,在正方形ABCD中,E,F分别为AD,CD边上的点,BE,AF交于点O,且AE=DF. (1) 求证:△ABE≌△DAF; (2) 若BO=4,DE=2,求正方形ABCD的面积. 12 24.(2017广西柳州,24,10分)如图,直线y=-x+2与反比例函数(k≠0)的图像交于A(-1,m),B(m,-1)两点,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D, (1)求m,n的值及反比例函数的解析式; (2)请问:在直线y=-x+2上是否存在点P,使得?若存在,求出点P的坐标;若不存在,请说明理由. 25.(2017广西柳州,25,10分)如图,已知AO为Rt△ABC的叫平分线,∠ACB=90°,, 以O为圆心,OC 为半径的圆分别交AO,BC于点D,E,连接ED并延长交AC于点F. (1) 求证:AB是⊙O的切线; (2) 求tan∠CAO的值; (3) 求的值. 26.(2017广西柳州,26,12分)如图,抛物线与x轴交于A、C两点(点A在点C的左边).直线y=kx+b(k≠0)分别交x轴,y轴与A,B两点,且除了点A之外,改直线与抛物线没有其他任何交点. (1)求A,C两点的坐标; (2)求k,b的值; (3)设点P是抛物线上的动点,过点P作直线y=kx+b(k≠0)的垂线,垂足为H,交抛物线的对称轴于点D,求PH+DH的最小值,并求此时点P的坐标. 12 2017年广西省柳州市中考数学试卷 第I卷(选择题,共36分) 一、选择题(每小题3分,共12小题,共计36分) 1.(2017广西柳州,1,3分)计算:(-3)+(-3)=( ) A.-9 B.9 C.-6 D.6 【答案】C. 解析:-3+(-3)=-(3+3)=-6. 2.(2017广西柳州,2,3分) 下列交通标志中,是轴对称图形的是( ) A.限制速度 B.禁止同行 C.禁止直行 D.禁止掉头 【答案】B.解析:根据轴对称图形定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,则这个图形叫轴对称图形.A、C、D选项既不是中心对称图形,也不是轴对称图形,B是轴对称图形,但不是中心对称图形. 3.(2017广西柳州,3,3分)如图,这是一个机械模具,则它的主视图是( ) A. B. C. D. 【答案】A,解析;主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的两个正方形和一个圆,其中圆在右边正方形的上面. 4.(2017广西柳州,4,3分)现有四个看上去完全一样的纸团,每个纸团里面分别写着数字1,2,3,4,现任意抽取一个纸团,则抽到的数字是4的概率是( ) A. B. C. D.1 【答案】C 【解析】所有等可能情况是4种(1、2、3、4),符合条件情况一种(4),故概率为. 5.(2017广西柳州,5,3分)如图,经过直线l外一点画l的垂线,能画出( ) A.1条 B.2条 C.3条 D.4条 【答案】A 【解析】平面内经过一点有且只有一条直线垂直于已知直线. 6.(2017广西柳州,6,3分)化简:2x-x=( ) A.2 B.1 C.2x D.x 【答案】D 【解析】2x-x=(2-1)x=x. 7.(2017广西柳州,7,3分)如图,直线y=2x必过的点是( ) 12 A.(2,1) B.(2,2) C.(-1,-1) D.(0,0) 【答案】D 【解析】将各点坐标代入y=2x,满足等号成立的既是直线上的点;或根据直线y=2x上的纵坐标是横坐标的2倍来判断. 8.(2017广西柳州,8,3分) 如图,这个五边形ABCDE的内角和等于( ) A.360° B.540° C.720° D.900° 【答案】B.解析:根据多边形内角和公式(n-2)×180°可得(5-2)×180°=540°. 9.(2017广西柳州,9,3分)如图,在⊙O中与∠1一定相等的角是( ) A.∠2 B.∠3 C.∠4 D.∠5 【答案】A,因为∠1和∠2所对的弧都是弧BC,根据同弧所对的圆周角相等可知∠1=∠2. 10.(2017广西柳州,10,3分)计算=( ). A. B. C. D.300 【答案】C 【解析】a·5ab=5a1+1b=5a2b. 11. (2017广西柳州,11,3分).化简:( ) A.-x. B. C. D. 【答案】D 【解析】原式= . 12. (2017广西柳州,12,3分).如果有一组数据为1,2,3,4,5,则这组数据的方差为( ) A.1 B.2 C.3 D.4 【答案】B 【解析】∵ 12 ∴=2. 第II卷(非选择题,共84分) 二、填空题(每小题3分,共18分). 13.(2017广西柳州,13,3分).如图,AB∥CD,若∠1=60°,则∠2=______°. 【答案】60° 【解析】∵AB∥CD,∴∠1=∠2=60°(两直线平行,同位角相等). 14.(2017广西柳州,14,3分).计算: =______. 【答案】.解析:. 15.(2017广西柳州,15,3分).若点A(2,2)在反比例函数(k≠0)的图像上,则k=______. 【答案】4 【解析】把(2,2)代入的k=4. 16.(2017广西柳州,16,3分)某校为了了解本届初三学生体质健康情况,从全校初三学生中随进抽取46名学生进行调查,上述抽取的样本容量为______. 【答案】46 【解析】样本容量是指抽查部分的数量,没有单位.因本题随机抽查46名同学,故样本容量是46. 17.(2017广西柳州,17,3分)如图,把这个“十字星”形图绕其中心点O旋转,当至少旋转______度后,所得图形与原图形重合. 【答案】90° 【解析】360°÷4=90°. 18.(2017广西柳州,18,3分)如图,在△ABC中,D,E分别为AB,AC的中点,BE交CD于点O,连接DE.有下列结论:①DE=BC;②△BOD∽△COE;③BO=2EO;④AO的延长线经过BC的中点.其中正确的是______(填写所有正确结论的编号) 12 【答案】.①③④ 【解析】∵D、E是AB、AC的中点,∴DE∥BC,DE=BC,故①正确; ∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AE :AC=1:2, ∵DE∥BC,∴△DOE∽△BOC,∴BO:OE=BC :DE=2:1,故③正确, 因为三角形三条中线交于一点,BE、CD是中线,故AO是三角形中线,故④正确; △DOE∽△COB,DO:OC=EO:OB=1:2,对△BOD和△COE来说不存在两组对边成比例,故△BOD和△COE不一定相似,故③错误. 三、解答题(本大题共8个小题,满分66分). 19.(2017广西柳州,19,6分)解方程:2x-7=0. 解:2x-7=0 2x=7 x=. 20.(2017广西柳州,20,6分)如图,在平行四边形ABCD中,AB=3,BC=4,求这个平行四边形ABCD的周长.. 【解析】∵四边形ABCD是平行四边形, ∴AB=CD,BC=AD, ∴平行四边形的周长为:2(AB+BC)=14. 21.(2017广西柳州,21,6分)据查,柳州市2017年6月5日至6月9日的气象数据如下,根据数据求出这五天最高气温的平均值. 6月5日 星期一 大雨 24~32°C 6月6日 星期二 中雨 23~30°C 6月7日 星期三 多云 23~31°C 6月8日 星期四 多云 25~33°C 6月9日 星期五 多云 26~34°C 12 【解析】, 答:这五天的最高气温平均32℃. 22.(2017广西柳州,22,8分)学校要组织去春游,小陈用50圆负责购买小组所需的两种食品,买第一种食品共花去了30元,剩余的钱还要买第二种食品,已知第二种食品的单价为60元/件,问:小陈最多能买第二种食品多少件? 【解析】设第二种食品买x件,根据题意得 6x≤50-30 解得x≤, 所以第二种食品最多买3件. 23.(2017广西柳州,23,8分)如图,在正方形ABCD中,E,F分别为AD,CD边上的点,BE,AF交于点O,且AE=DF. (1) 求证:△ABE≌△DAF; (2) 若BO=4,DE=2,求正方形ABCD的面积. 【解析】(1)证明:∵四边形ABCD是正方形, ∴AB=AD,∠BAE=∠D=90°, 又AE=DF, ∴△ABE≌△DAF; (2)∵△ABE≌△DAF, ∴∠FAD=∠ABE, 又∠FAD+∠BAO=90°, ∴∠ABO+∠BAO=90°, ∴△ABO∽△EAB, ∴AB:BE=BO:AB,即AB:6=4:AB, ∴AB2=24, 所以正方形ABCD面积是24. 24.(2017广西柳州,24,10分)如图,直线y=-x+2与反比例函数(k≠0)的图像交于A(-1,m),B(m,-1)两点,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D, (1)求m,n的值及反比例函数的解析式; (2)请问:在直线y=-x+2上是否存在点P,使得?若存在,求出点P的坐标;若不存在,请说明理由. 12 【解析】(1)把A(-1,m)、B(n,-1)分别代入y=-x+1得 m=1+2或-1=-n+2 ∴m=3,n=3, ∴A(-1,3),B(3,-1), 把A(-1,3), 代入得k=-3, ∴; (2) 存在.设P(x,-x+2), 则P到AC、BD的距离分别为, ∵, 即, ∴或, 解得x=-3,或x=0, ∴P(-3,5)或(0,2). 25.(2017广西柳州,25,10分)如图,已知AO为Rt△ABC的叫平分线,∠ACB=90°,, 以O为圆心,OC 为半径的圆分别交AO,BC于点D,E,连接ED并延长交AC于点F. (1) 求证:AB是⊙O的切线; (2) 求tan∠CAO的值; (3) 求的值. 【解析】(1)证明:作OG OG⊥AB于点G. ∵∠C=∠OGA,∠GAO=∠CAO,AO=AO, 12 ∴△OGA≌△OCA, ∴∠OGA=∠OCA=90°, ∴AB是切线; (2) 设AC=4x,BC=3x,圆O半径为r,则AB=5x,由切线长定理知,AC=AG=4x,故 BG=x. ∵tan∠B=OG:BG=AC:BC=4:3, ∴OG=, ∴tan∠CAO=tan∠GAO=; (3)在Rt△OCA中,AO= , ∴AD=OA-OD=. 连接CD,则∠DCF+∠ECD=∠ECD+∠CEF, ∴∠DCF=∠CEF, 又∠CEF=∠EDO=∠FDA, ∴∠DCF=∠ADF,又∠FAD=∠DAC, ∴△DFA∽△CDA, ∴DA:AC=AF:AD, 即:4x=AF:, ∴AF=, ∴. 26.(2017广西柳州,26,12分)如图,抛物线与x轴交于A、C两点(点A在点C的左边).直线y=kx+b(k≠0)分别交x轴,y轴与A,B两点,且除了点A之外,改直线与抛物线没有其他任何交点. (1)求A,C两点的坐标; (2)求k,b的值; (3)设点P是抛物线上的动点,过点P作直线y=kx+b(k≠0)的垂线,垂足为H,交抛物线的对称轴于点D,求PH+DH的最小值,并求此时点P的坐标. 【解析】(1) ,解得x1=-3,x2=1,所以A(-3,0),C(1,0); 12 (2)把A(-3,0)代入y=kx+b得0=-3k+b,∴b=3k; 由得,即, ∵直线y=kx+b和抛物线有唯一公共点, ∴ 把b=3k代入得 解得k=1,∴b=3 ∴直线AB表达式为y=x+3; (3) 作HG⊥对称轴于点G,HF⊥对称轴于点F. 由抛物线表达式知对称轴为x=-1, 由直线y=x+3知∠EAO=∠EHG=∠AEM=∠PFD=∠PDF=45°. 当x=-1时,y=x+3=2,即H(-1,2). 设P(x, ),则PF=FD=-1-x,ED=EM+MF+FD=2-()+(-1-x)= ,PD== ∴DH=HE==, ∴DH+PH=DH+DH-PD=2DH-PD==, 当x=时,PH+DH取得最小值,最小值是 12查看更多