2008年江苏省连云港市中等学校招生考试数学试题(含答案)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2008年江苏省连云港市中等学校招生考试数学试题(含答案)

‎2008年江苏省连云港市中等学校招生考试 数学试题 一、选择(每小题给出的四个选项中,只有一项是符合题目要求的,每小题3分,满分24分)‎ ‎1.计算的值是( )‎ A. B. C. D.‎ ‎2.化简的结果是( )‎ A. B. C. D.‎ ‎3.据《连云港日报》报道,至‎2008年5月1日零时,田湾核电站1、2号两台机组今年共累计发电42.96亿千瓦时.“42.96亿”用科学记数法可表示为( )‎ A. B. C. D.‎ ‎4.如果有意义,那么字母的取值范围是( )‎ A. B. C. D.‎ ‎5.实数在数轴上对应点的位置如图所示,‎ ‎0‎ a ‎1‎ ‎0‎ b ‎(第5题图)‎ 则必有( )‎ A. B. ‎ C. D.‎ ‎6.若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是( )‎ A.球 B.圆柱 C.圆锥 D.棱锥 ‎7.已知为矩形的对角线,则图中与一定不相等的是( )‎ B A ‎1‎ D C ‎2‎ ‎1‎ ‎1‎ ‎2‎ B A D C B A C ‎1‎ ‎2‎ D ‎1‎ ‎2‎ B A D C A. B. C. D.‎ ‎8.已知某反比例函数的图象经过点,则它一定也经过点( )‎ A. B. C. D.‎ 二、填空(每小题4分,满分32分)‎ ‎9.如果,那么的算术平方根是 .‎ ‎10.当时,代数式的值为 .‎ ‎11.在中,,,,则 .‎ ‎12.若一个分式含有字母,且当时,它的值为12,则这个分式可以是 .‎ ‎(写出一个即可)‎ ‎13.不等式组的解集是 .‎ ‎14.如图,一落地晾衣架两撑杆的公共点为,cm,cm.若撑杆下端点所在直线平行于上端点所在直线,且cm,则 ____________cm.‎ ‎(第15题图)‎ S B A ‎45cm ‎15.如图,扇形彩色纸的半径为‎45cm,圆心角为,用它制作一个圆锥形火炬模型的侧面(接头忽略不计),则这个圆锥的高约为 cm.(结果精确到‎0.1cm.参考数据:,,,)‎ ‎(第14题图)‎ ‎16.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,,依此类推,则由正边形“扩展”而来的多边形的边数为 ____________.‎ ‎① ② ③ ④‎ ‎(第16题图)‎ ‎……‎ 三、计算与求解(满分20分)‎ ‎17.(本小题满分12分)‎ ‎(1)计算:;‎ ‎(2)解方程:.‎ ‎18.(本小题满分8分)‎ B C P O A ‎(第18题图)‎ 如图,内接于,为的直径,,,过点作的切线与的延长线交于点,求的长.‎ 四、画图与说理(满分16分)‎ ‎19.(本小题满分8分)‎ 如图,在平面直角坐标系中,点的坐标分别为.‎ ‎(1)请在图中画出,使得与关于点成中心对称;‎ ‎(2)若一个二次函数的图象经过(1)中的三个顶点,求此二次函数的关系式.‎ x O y A C B P ‎(第19图)‎ ‎20.(本小题满分8分)‎ 如图,在直角梯形纸片中,,,,将纸片沿过点的直线折叠,使点落在边上的点处,折痕为.连接并展开纸片.‎ ‎(1)求证:四边形是正方形;‎ ‎(2)取线段的中点,连接,如果,试说明四边形是等腰梯形.‎ E C B D A G F ‎(第20题图)‎ 五、生活与数学(满分32分)‎ ‎21.(本小题满分8分)‎ 某中学为了了解七年级学生的课外阅读情况,随机调查了该年级的25名学生,得到了他们上周双休日课外阅读时间(记为,单位:小时)的一组样本数据,其扇形统计图如图所示,其中表示与对应的学生数占被调查人数的百分比.‎ ‎(1)求与相对应的值;‎ ‎(2)试确定这组样本数据的中位数和众数;‎ t=1‎ t=2‎ y=16%‎ y=24%‎ t=3‎ y=?‎ t=4‎ t=5‎ y=12%‎ y=8%‎ t=6‎ y=12%‎ ‎(第21题图)‎ ‎(3)请估计该校七年级学生上周双休日的平均课外阅读时间.‎ ‎22.(本小题满分12分)‎ 甲、乙两人玩“锤子、石头、剪子、布”游戏,他们在不透明的袋子中放入形状、大小均相同的15张卡片,其中写有“锤子”、“石头”、“剪子”、“布”的卡片张数分别为2,3,4,6.两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定:“锤子”胜“石头”和“剪子”,“石头”胜“剪子”,“剪子”胜“布”,“布”胜“锤子”和“石头”,同种卡片不分胜负.‎ ‎(1)若甲先摸,则他摸出“石头”的概率是多少?‎ ‎(2)若甲先摸出了“石头”,则乙获胜的概率是多少?‎ ‎(3)若甲先摸,则他先摸出哪种卡片获胜的可能性最大?‎ ‎23.(本小题满分12分)‎ ‎“爱心”帐篷集团的总厂和分厂分别位于甲、乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.‎ ‎(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?‎ ‎(2)现要将这些帐篷用卡车一次性运送到该地震灾区的两地,由于两市通住两地道路的路况不同,卡车的运载量也不同.已知运送帐篷每千顶所需的车辆数、两地所急需的帐篷数如下表:‎ 地 地 每千顶帐篷 所需车辆数 甲市 ‎4‎ ‎7‎ 乙市 ‎3‎ ‎5‎ 所急需帐篷数(单位:千顶)‎ ‎9‎ ‎5‎ 请设计一种运送方案,使所需的车辆总数最少.说明理由,并求出最少车辆总数.‎ 六、操作与探究(满分26分)‎ ‎24.(本小题满分14分)‎ 如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的,处,直角边在轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至处时,设与分别交于点,与轴分别交于点.‎ ‎(1)求直线所对应的函数关系式;‎ ‎(2)当点是线段(端点除外)上的动点时,试探究:‎ ‎①点到轴的距离与线段的长是否总相等?请说明理由;‎ A O E G B F H N C P I x y M ‎(第24题图)‎ D II ‎②两块纸板重叠部分(图中的阴影部分)的面积是否存在最大值?若存在,求出这个最大值及取最大值时点的坐标;若不存在,请说明理由.‎ ‎25.(本小题满分12分)‎ 我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段的最小覆盖圆就是以线段为直径的圆.‎ A A B B C C ‎(第25题图1)‎ ‎(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);‎ ‎(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);‎ G H E F ‎(第25题图2)‎ ‎(3)某地有四个村庄(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.‎ ‎2008年江苏省连云港市数学试题答案及评分标准 一、选择题 ‎1.C 2.B 3.C 4.A 5.D 6.C 7.D 8.B 二、填空题 ‎9.; 10.; 11.; 12.(答案不唯一);‎ ‎13.; 14.60; 15.44.7; 16.‎ 三、计算与求解 ‎17.(1)解:原式 3分 ‎ 6分 ‎(2)解法一:因为,所以. 3分 即.所以,原方程的根为,. 6分 解法二:配方,得. 2分 直接开平方,得. 4分 所以,原方程的根为,. 6分 ‎18.解:是的直径,.又,‎ ‎,. 3分 又,所以是等边三角形,由,知. 5分 是的切线,.‎ 在中,,,‎ x O y A C B P ‎(第19答图)‎ 所以,. 8分 四、画图与说理 ‎19.解:(1)如图所示.…… 3分 ‎(2)由(1)知,点的坐标分别为.‎ 由二次函数图象与轴的交点的坐标为,‎ 故可设所求二次函数关系式为. 5分 将的坐标代入,得,解得.‎ 故所求二次函数关系式为. 8分 ‎20.证明:(1),,.‎ 由沿折叠后与重合,知,.‎ E C B D A G F ‎(第20题答图)‎ 四边形是矩形,且邻边相等.‎ 四边形是正方形. 3分 ‎(2),且,四边形是梯形. 4分 四边形是正方形,,.‎ 又点为的中点,.连接.‎ 在与中,,,,‎ ‎,. 6分 ‎,,四边形是平行四边形.‎ ‎...‎ 四边形是等腰梯形. 8分 注:第(2)小题也可过点作,垂足为点,证.‎ 五、生活与数学 ‎21.解:(1)与相对应的值为. 2分 ‎(2)在样本数据中,“1”的个数,同理可得“2”,“3”,“4”,“5”,“6”的个数分别为4,6,7,3,2.可知样本数据的中位数和众数分别为3小时和4小时. 5分 ‎(3)这组样本数据的平均数为 ‎(小时)‎ 由抽样的随机性,可知总体平均数的估计值约为3.36小时.‎ 答:估计该校七年级学生上周双休日的平均课外阅读时间约为3.36小时. 8分 ‎22.解:(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张,‎ 故甲摸出“石头”的概率为. 3分 ‎(2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为. 6分 ‎(3)若甲先摸,则“锤子”、“石头”、“剪子”、“布”四种卡片都有可能被摸出.‎ 若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为;‎ 若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为;‎ 若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为;‎ 若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为. 10分 故甲先摸出“锤子”获胜的可能性最大. 12分 ‎23.解:(1)设总厂原来每周制作帐篷千顶,分厂原来每周制作帐篷千顶.‎ 由题意,得 3分 解得所以(千顶),(千顶).‎ 答:在赶制帐篷的一周内,总厂、分厂各生产帐篷8千顶、6千顶. 6分 ‎(2)设从(甲市)总厂调配千顶帐篷到灾区的地,则总厂调配到灾区地的帐篷为千顶,(乙市)分厂调配到灾区两地的帐篷分别为千顶.‎ 甲、乙两市所需运送帐篷的车辆总数为辆. 8分 由题意,得.‎ 即. 10分 因为,所以随的增大而减小.‎ 所以,当时,有最小值60.‎ 答:从总厂运送到灾区地帐篷8千顶,从分厂运送到灾区两地帐篷分别为1千顶、5千顶时所用车辆最少,最少的车辆为60辆. 12分 六、操作与探究 ‎24.解:(1)由直角三角形纸板的两直角边的长为1和2,‎ 知两点的坐标分别为.‎ 设直线所对应的函数关系式为. 2分 有解得 A O E G B F H N C P I x y M ‎(第24题答图)‎ K II 所以,直线所对应的函数关系式为. 4分 ‎(2)①点到轴距离与线段的长总相等.‎ 因为点的坐标为,‎ 所以,直线所对应的函数关系式为.‎ 又因为点在直线上,‎ 所以可设点的坐标为.‎ 过点作轴的垂线,设垂足为点,则有.‎ 因为点在直线上,所以有. 6分 因为纸板为平行移动,故有,即.‎ 又,所以.‎ 法一:故,‎ 从而有.‎ 得,.‎ 所以.‎ 又有. 8分 所以,得,而,‎ 从而总有. 10分 法二:故,可得.‎ 故.‎ 所以.‎ 故点坐标为.‎ 设直线所对应的函数关系式为,‎ 则有解得 所以,直线所对的函数关系式为. 8分 将点的坐标代入,可得.解得.‎ 而,从而总有. 10分 ‎②由①知,点的坐标为,点的坐标为.‎ ‎. 12分 当时,有最大值,最大值为.‎ 取最大值时点的坐标为. 14分 ‎25.解:(1)如图所示: 4分 A A B B C C ‎(第25题答图1)‎ ‎(注:正确画出1个图得2分,无作图痕迹或痕迹不正确不得分)‎ ‎(2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆; 6分 若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆. 8分 ‎(3)此中转站应建在的外接圆圆心处(线段的垂直平分线与线段的垂直平分线的交点处). 10分 G H E F ‎(第25题答图2)‎ M 理由如下:‎ 由,‎ ‎,,‎ 故是锐角三角形,‎ 所以其最小覆盖圆为的外接圆,‎ 设此外接圆为,直线与交于点,‎ 则.‎ 故点在内,从而也是四边形的最小覆盖圆.‎ 所以中转站建在的外接圆圆心处,能够符合题中要求.‎ ‎ 12分 ‎【注:各题其它的解法,请参照本评分标准评分】‎
查看更多

相关文章

您可能关注的文档