- 2021-05-10 发布 |
- 37.5 KB |
- 112页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考二次函数压轴题汇编
2018年中考二次函数压轴题汇编 2.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t. (1)求抛物线的表达式; (2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由. (3)如图2,连接BC,PB,PC,设△PBC的面积为S. ①求S关于t的函数表达式; ②求P点到直线BC的距离的最大值,并求出此时点P的坐标. 3.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC. (1)求线段OC的长度; (2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式; (3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由. 4.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4. (1)求抛物线的函数表达式. (2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少? (3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离. 5.如图,点P为抛物线y=x2上一动点. (1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程; (2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M. ① 问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由. ②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值. 6.已知直线y=x+3与x轴、y轴分别相交于A、B两点,抛物线y=x2+bx+c经过A、B两点,点M在线段OA上,从O点出发,向点A以每秒1个单位的速度匀速运动;同时点N在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接MN,设运动时间为t秒 (1)求抛物线解析式; (2)当t为何值时,△AMN为直角三角形; (3)过N作NH∥y轴交抛物线于H,连接MH,是否存在点H使MH∥AB,若存在,求出点H的坐标,若不存在,请说明理由. 7.如图,抛物线经过原点O(0,0),点A(1,1),点. (1)求抛物线解析式; (2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积; (3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由. 8.如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2). (1)求a值并写出二次函数表达式; (2)求b值; (3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC; (4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由. 9.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点. (1)求抛物线的解折式和A、B两点的坐标; (2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由; (3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标. 10.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线的解析式; (2)当点P运动到什么位置时,△PAB的面积有最大值? (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 11.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C. (1)求点A,B,C的坐标; (2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积; (3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由. 12.综合与探究 如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F. (1)求A,B,C三点的坐标; (2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由; (3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值. 13.已知抛物线y=ax2+bx+c过点A(0,2). (1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式; (2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ ABC有一个内角为60°. ①求抛物线的解析式; ②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN. 14.如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5). (1)求出这条抛物线的表达式; (2)当t=0时,求S△OBN的值; (3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时,S有最大值,最大值是多少? 15.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M. (1)求该抛物线所表示的二次函数的表达式; (2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形? (3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由. 16.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN. (1)求抛物线的解析式及点D的坐标; (2)当△CMN是直角三角形时,求点M的坐标; (3)试求出AM+AN的最小值. 17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C. (1)求抛物线的表达式; (2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ. (1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标; (Ⅱ)直尺在平移过程中,△ DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由. 18.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. (3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标. 19.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P. (Ⅰ)当抛物线经过点A时,求顶点P的坐标; (Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式; (Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式. 20.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+ 1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧). (1)求函数y=ax2+bx+c的解析式; (2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率; (3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由. 21.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3). (1)求该抛物线的解析式; (2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标; (3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由. 22.已知顶点为A抛物线经过点,点. (1)求抛物线的解析式; (2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积; (3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标. 23.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°. (1)求抛物线的解析式; (2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题: ①求证:BC平分∠MBN; ②求△MBC外心的纵坐标的取值范围. 24.如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3. (1)求该二次函数的解析式; (2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标; (3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标. 25.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点. (1)求抛物线的解析式,并写出D点的坐标; (2)F(x,y)是抛物线上的动点: ①当x>1,y>0时,求△BDF的面积的最大值; ②当∠AEF=∠DBE时,求点F的坐标. 26.如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0). (1)求此抛物线的解析式; (2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围); (3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标. 27.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0). (1)求抛物线F的解析式; (2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示); (3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2. ①判断△AA′B的形状,并说明理由; ②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由. 28.已知:如图,一次函数y=kx﹣1的图象经过点A(3,m)(m>0),与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD. (1)求这个一次函数的表达式; (2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣,0),求这条抛物线的函数表达式. 29.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C. (1)求抛物线的解析式; (2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标; (3)抛物线上是否存在点Q,使得S△AOC=S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由. 30.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G. (1)求出抛物线C1的解析式,并写出点G的坐标; (2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值: (3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由. 31.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点. (1)求二次函数的解析式及点E的坐标. (2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标. (3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标. 32.如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B. (1)求m的值; (2)求函数y=ax2+b(a≠0)的解析式; (3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由. 33.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点. (1)求抛物线的解析式和直线AC的解析式; (2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标; (3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. 34.已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点. (1)求抛物线的解析式; (2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标; (3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点. ①求证:∠PDQ=90°; ②求△PDQ面积的最小值. 35.抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象. (1)点A,B,D的坐标分别为 , , ; (2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围; (3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由. 36.如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y轴交于点B,连接AB. (1)求该抛物线的解析式; (2)将△ABO绕点O旋转,点B的对应点为点F. ①当点F落在直线AE上时,求点F的坐标和△ABF的面积; ②当点F到直线AE的距离为时,过点F作直线AE的平行线与抛物线相交,请直接写出交点的坐标. 37.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC. (1)求点A、B、D的坐标; (2)若△AOD与△BPC相似,求a的值; (3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由. 38.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2. (1)求抛物线的解析式; (2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当时,求k的值; (3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标. (坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=) 39.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点. (1)求抛物线的解析式; (2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE. ①求点P的坐标; ②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由. 40.如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B(5,t),与抛物线的对称轴相交于点C. (1)求抛物线的解析式; (2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标; (3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式; (4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标. 2018年07月10日139****3005的初中数学组卷 参考答案与试题解析 一.选择题(共1小题) 1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于( ) A. B.2 C.4 D.3 【解答】解:点C在双曲线y=上,AC∥y轴,BC∥x轴, 设C(a,),则B(3a,),A(a,), ∵AC=BC, ∴﹣=3a﹣a, 解得a=1,(负值已舍去) ∴C(1,1),B(3,1),A(1,3), ∴AC=BC=2, ∴Rt△ABC中,AB=2, 故选:B. 二.解答题(共39小题) 2.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t. (1)求抛物线的表达式; (2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由. (3)如图2,连接BC,PB,PC,设△PBC的面积为S. ①求S关于t的函数表达式; ②求P点到直线BC的距离的最大值,并求出此时点P的坐标. 【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c, ,解得:, ∴抛物线的表达式为y=﹣x2+2x+3. (2)在图1中,连接PC,交抛物线对称轴l于点E, ∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点, ∴抛物线的对称轴为直线x=1. 当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形. ∵抛物线的表达式为y=﹣x2+2x+3, ∴点C的坐标为(0,3),点P的坐标为(2,3), ∴点M的坐标为(1,6); 当t≠2时,不存在,理由如下: 若四边形CDPM是平行四边形,则CE=PE, ∵点C的横坐标为0,点E的横坐标为0, ∴点P的横坐标t=1×2﹣0=2. 又∵t≠2, ∴不存在. (3)①在图2中,过点P作PF∥y轴,交BC于点F. 设直线BC的解析式为y=mx+n(m≠0), 将B(3,0)、C(0,3)代入y=mx+n, ,解得:, ∴直线BC的解析式为y=﹣x+3. ∵点P的坐标为(t,﹣t2+2t+3), ∴点F的坐标为(t,﹣t+3), ∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t, ∴S=PF•OB=﹣t2+t=﹣(t﹣)2+. ②∵﹣<0, ∴当t=时,S取最大值,最大值为. ∵点B的坐标为(3,0),点C的坐标为(0,3), ∴线段BC==3, ∴P点到直线BC的距离的最大值为=,此时点P的坐标为(,). 3.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC. (1)求线段OC的长度; (2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式; (3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由. 【解答】解:(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0, 解得:x1=1,x2=3,即A(1,0),B(3,0), ∴OA=1,OB=3 ∵△OCA∽△OBC, ∴OC:OB=OA:OC, ∴OC2=OA•OB=3, 则OC=; (2)∵C是BM的中点,即OC为斜边BM的中线, ∴OC=BC, ∴点C的横坐标为, 又OC=,点C在x轴下方, ∴C(,﹣), 设直线BM的解析式为y=kx+b, 把点B(3,0),C(,﹣)代入得:, 解得:b=﹣,k=, ∴y=x﹣, 又∵点C(,﹣)在抛物线上,代入抛物线解析式, 解得:a=, ∴抛物线解析式为y=x2﹣x+2; (3)点P存在, 设点P坐标为(x,x2﹣x+2),过点P作PQ⊥x轴交直线BM于点Q, 则Q(x,x﹣), ∴PQ=x﹣﹣(x2﹣x+2)=﹣x2+3x﹣3, 当△BCP面积最大时,四边形ABPC的面积最大, S△BCP=PQ(3﹣x)+PQ(x﹣)=PQ=﹣x2+x﹣, 当x=﹣=时,S△BCP有最大值,四边形ABPC的面积最大,此时点P的坐标为(,﹣). 4.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4. (1)求抛物线的函数表达式. (2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少? (3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离. 【解答】解:(1)设抛物线解析式为y=ax(x﹣10), ∵当t=2时,AD=4, ∴点D的坐标为(2,4), ∴将点D坐标代入解析式得﹣16a=4, 解得:a=﹣, 抛物线的函数表达式为y=﹣x2+x; (2)由抛物线的对称性得BE=OA=t, ∴AB=10﹣2t, 当x=t时,AD=﹣t2+t, ∴矩形ABCD的周长=2(AB+AD) =2[(10﹣2t)+(﹣t2+t)] =﹣t2+t+20 =﹣(t﹣1)2+, ∵﹣<0, ∴当t=1时,矩形ABCD的周长有最大值,最大值为; (3)如图, 当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4), ∴矩形ABCD对角线的交点P的坐标为(5,2), 当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分; 当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分; ∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分, 当点G、H分别落在线段AB、DC上时,直线GH过点P,必平分矩形ABCD的面积, ∵AB∥CD, ∴线段OD平移后得到的线段GH, ∴线段OD的中点Q平移后的对应点是P, 在△OBD中,PQ是中位线, ∴PQ=OB=4, 所以抛物线向右平移的距离是4个单位. 5.如图,点P为抛物线y=x2上一动点. (1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程; (2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M. ①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由. ②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值. 【解答】解:(1)∵抛物线y=(x+2)2﹣1的顶点为(﹣2,﹣1) ∴抛物线y=(x+2)2﹣1的图象向上平移1个单位,再向右2个单位得到抛物线y=x2的图象. (2)①存在一定点F,使得PM=PF恒成立. 如图一,过点P作PB⊥y轴于点B 设点P坐标为(a,a2) ∴PM=PF=a2+1 ∵PB=a ∴Rt△PBF中 BF= ∴OF=1 ∴点F坐标为(0,1) ②由①,PM=PF QP+PF的最小值为QP+PM的最小值 当Q、P、M三点共线时,QP+PM有最小值,最小值为点Q纵坐标加M纵坐标的绝对值. ∴QP+PF的最小值为6. 6.已知直线y=x+3与x轴、y轴分别相交于A、B两点,抛物线y=x2+bx+c经过A、B两点,点M在线段OA上,从O点出发,向点A以每秒1个单位的速度匀速运动;同时点N在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接MN,设运动时间为t秒 (1)求抛物线解析式; (2)当t为何值时,△AMN为直角三角形; (3)过N作NH∥y轴交抛物线于H,连接MH,是否存在点H使MH∥AB,若存在,求出点H的坐标,若不存在,请说明理由. 【解答】解:(1)∵直线y=x+3与x轴、y轴分别相交于A、B两点, ∴点A的坐标为(﹣3,0),点B的坐标为(0,3). 将A(﹣3,0)、B(0,3)代入y=x2+bx+c,得: ,解得:, ∴抛物线解析式为y=x2+4x+3. (2)当运动时间为t秒时,点M的坐标为(﹣t,0),点N的坐标为(t﹣3,t), ∴AM=3﹣t,AN=t. ∵△AMN为直角三角形,∠MAN=45°, ∴△AMN为等腰直角三角形(如图1). 当∠ANM=90°时,有AM=AN,即3﹣t=2t, 解得:t=1; 当∠AMN=90°时,有t﹣3=﹣t, 解得:t=. 综上所述:当t为1秒或秒时,△AMN为直角三角形. (3)设NH与x轴交于点E,如图2所示. 当运动时间为t秒时,点M的坐标为(﹣t,0),点N的坐标为(t﹣3,t), ∴点E的坐标为(t﹣3,0),点H的坐标为(t﹣3,t2﹣2t). ∵MH∥AB, ∴∠EMH=45°, ∴△EMH为等腰直角三角形, ∴ME=HE,即|2t﹣3|=|t2﹣2t|, 解得:t1=1,t2=3(舍去),t3=,t4=﹣(舍去). 当t=时,点E在点M的右边,点H在x轴下方, ∴此时MH⊥AB, ∴t=1. ∴存在点H使MH∥AB,点H的坐标为(﹣2,﹣1). 7.如图,抛物线经过原点O(0,0),点A(1,1),点. (1)求抛物线解析式; (2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积; (3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由. 【解答】解:(1)设抛物线解析式为y=ax(x﹣), 把A(1,1)代入得a•1(1﹣)=1,解得a=﹣, ∴抛物线解析式为y=﹣x(x﹣), 即y=﹣x2+x; (2)延长CA交y轴于D,如图1, ∵A(1,1), ∴OA=,∠DOA=45°, ∴△AOD为等腰直角三角形, ∵OA⊥AC, ∴OD=OA=2, ∴D(0,2), 易得直线AD的解析式为y=﹣x+2, 解方程组得或,则C(5,﹣3), ∴S△AOC=S△COD﹣S△AOD =×2×5﹣×2×1 =4; (3)存在. 如图2,作MH⊥x轴于H,AC==4,OA=, 设M(x,﹣x2+x)(x>0), ∵∠OHM=∠OAC, ∴当=时,△OHM∽△OAC,即=, 解方程﹣x2+x=4x得x1=0(舍去),x2=﹣(舍去), 解方程﹣x2+x=﹣4x得x1=0(舍去),x2=,此时M点坐标为(,﹣54); 当=时,△OHM∽△CAO,即=, 解方程﹣x2+x=x得x1=0(舍去),x2=,此时M点的坐标为(,), 解方程﹣x2+x=﹣x得x1=0(舍去),x2=﹣,此时M点坐标为(,﹣); ∵MN⊥OM, ∴∠OMN=90°, ∴∠MON=∠HOM, ∴△OMH∽△ONM, ∴当M点的坐标为(,﹣54)或(,)或(,﹣ )时,以点O,M,N为顶点的三角形与(2)中的△AOC相似. 8.如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2). (1)求a值并写出二次函数表达式; (2)求b值; (3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC; (4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由. 【解答】解:(1)∵二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2), ∴2=4a+1,解得:a=, ∴二次函数表达式为y=x2+1. (2)∵一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2), ∴2=k×0+b, ∴b=2. (3)证明:过点M作ME⊥y轴于点E,如图1所示. 设点M的坐标为(x,x2+1),则MC=x2+1, ∴ME=|x|,EB=|x2+1﹣2|=|x2﹣1|, ∴MB=, =, =, =, =x2+1. ∴MB=MC. (4)相切,理由如下: 过点N作ND⊥x轴于D,取MN的中点为P,过点P作PF⊥x轴于点F,过点N作NH⊥MC于点H,交PF于点Q,如图2所示. 由(3)知NB=ND, ∴MN=NB+MB=ND+MC. ∵点P为MN的中点,PQ∥MH, ∴PQ=MH. ∵ND∥HC,NH∥DC,且四个角均为直角, ∴四边形NDCH为矩形, ∴QF=ND, ∴PF=PQ+QF=MH+ND=(ND+MH+HC)=(ND+MC)=MN. ∴以MN为直径的圆与x轴相切. 9.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点. (1)求抛物线的解折式和A、B两点的坐标; (2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由; (3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标. 【解答】解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3, ∴﹣=3,解得:a=﹣, ∴抛物线的解析式为y=﹣x2+x+4. 当y=0时,﹣x2+x+4=0, 解得:x1=﹣2,x2=8, ∴点A的坐标为(﹣2,0),点B的坐标为(8,0). (2)当x=0时,y=﹣x2+x+4=4, ∴点C的坐标为(0,4). 设直线BC的解析式为y=kx+b(k≠0). 将B(8,0)、C(0,4)代入y=kx+b, ,解得:, ∴直线BC的解析式为y=﹣x+4. 假设存在,设点P的坐标为(x,﹣x2+x+4),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图所示. ∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x, ∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16. ∵﹣1<0, ∴当x=4时,△PBC的面积最大,最大面积是16. ∵0<x<8, ∴存在点P,使△PBC的面积最大,最大面积是16. (3)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4), ∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|. 又∵MN=3, ∴|﹣m2+2m|=3. 当0<m<8时,有﹣m2+2m﹣3=0, 解得:m1=2,m2=6, ∴点P的坐标为(2,6)或(6,4); 当m<0或m>8时,有﹣m2+2m+3=0, 解得:m3=4﹣2,m4=4+2, ∴点P的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1). 综上所述:M点的坐标为(4﹣2,﹣1)、(2,6)、(6,4)或(4+2,﹣﹣1). 10.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线的解析式; (2)当点P运动到什么位置时,△PAB的面积有最大值? (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 【解答】解:(1)∵抛物线过点B(6,0)、C(﹣2,0), ∴设抛物线解析式为y=a(x﹣6)(x+2), 将点A(0,6)代入,得:﹣12a=6, 解得:a=﹣, 所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6; (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G, 设直线AB解析式为y=kx+b, 将点A(0,6)、B(6,0)代入,得: , 解得:, 则直线AB解析式为y=﹣x+6, 设P(t,﹣t2+2t+6)其中0<t<6, 则N(t,﹣t+6), ∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t, ∴S△PAB=S△PAN+S△PBN =PN•AG+PN•BM =PN•(AG+BM) =PN•OB =×(﹣t2+3t)×6 =﹣t2+9t =﹣(t﹣3)2+, ∴当t=3时,△PAB的面积有最大值; (3)如图2, ∵PH⊥OB于H, ∴∠DHB=∠AOB=90°, ∴DH∥AO, ∵OA=OB=6, ∴∠BDH=∠BAO=45°, ∵PE∥x轴、PD⊥x轴, ∴∠DPE=90°, 若△PDE为等腰直角三角形, 则PD=PE, 设点P的横坐标为a, ∴PD=﹣a2+2a+6﹣(﹣a+6)=﹣a2+3a,PE=2|2﹣a|, ∴﹣a2+3a=2|2﹣a|, 解得:a=4或a=5﹣, 所以P(4,6)或P(5﹣,3﹣5). 11.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C. (1)求点A,B,C的坐标; (2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积; (3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由. 【解答】解:(1)当x=0时,y=x2﹣x﹣4=﹣4, ∴点C的坐标为(0,﹣4); 当y=0时,有x2﹣x﹣4=0, 解得:x1=﹣2,x2=3, ∴点A的坐标为(﹣2,0),点B的坐标为(3,0). (2)设直线BC的解析式为y=kx+b(k≠0), 将B(3,0)、C(0,﹣4)代入y=kx+b, ,解得:, ∴直线BC的解析式为y=x﹣4. 过点Q作QE∥y轴,交x轴于点E,如图1所示, 当运动时间为t秒时,点P的坐标为(2t﹣2,0),点Q的坐标为(3﹣t,﹣t), ∴PB=3﹣(2t﹣2)=5﹣2t,QE=t, ∴S△PBQ=PB•QE=﹣t2+2t=﹣(t﹣)2+. ∵﹣<0, ∴当t=时,△PBQ的面积取最大值,最大值为. (3)当△PBQ面积最大时,t=, 此时点P的坐标为(,0),点Q的坐标为(,﹣1). 假设存在,设点M的坐标为(m,m2﹣m﹣4),则点F的坐标为(m,m﹣4), ∴MF=m﹣4﹣(m2﹣m﹣4)=﹣m2+2m, ∴S△BMC=MF•OB=﹣m2+3m. ∵△BMC的面积是△PBQ面积的1.6倍, ∴﹣m2+3m=×1.6,即m2﹣3m+2=0, 解得:m1=1,m2=2. ∵0<m<3, ∴在BC下方的抛物线上存在点M,使△BMC的面积是△PBQ面积的1.6倍,点M的坐标为(1,﹣4)或(2,﹣). 12.综合与探究 如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F. (1)求A,B,C三点的坐标; (2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由; (3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值. 【解答】解:(1)当y=0,x﹣4=0,解得x1=﹣3,x2=4, ∴A(﹣3,0),B(4,0), 当x=0,y=x﹣4=﹣4, ∴C(0,﹣4); (2)AC==5, 易得直线BC的解析式为y=x﹣4, 设Q(m,m﹣4)(0<m<4), 当CQ=CA时,m2+(m﹣4+4)2=52,解得m1=,m2=﹣(舍去),此时Q点坐标为(,﹣4); 当AQ=AC时,(m+3)2+(m﹣4)2=52,解得m1=1,m2=0(舍去),此时Q点坐标为(1,﹣3); 当QA=QC时,(m+3)2+(m﹣4)2=52,解得m=(舍去), 综上所述,满足条件的Q点坐标为(,﹣4)或(1,﹣3); (3)解:过点F作FG⊥PQ于点G,如图, 则FG∥x轴.由B(4,0),C(0,﹣4)得△OBC为等腰直角三角形 ∴∠OBC=∠QFG=45 ∴△FQG为等腰直角三角形, ∴FG=QG=FQ, ∵PE∥AC,PG∥CO, ∴∠FPG=∠ACO, ∵∠FGP=∠AOC=90°, ∴△FGP~△AOC. ∴=,即=, ∴PG=FG=•FQ=FQ, ∴PQ=PG+GQ=FQ+FQ=FQ, ∴FQ=PQ, 设P(m,m2﹣m﹣4)(0<m<4),则Q(m,m﹣4), ∴PQ=m﹣4﹣(m2﹣m﹣4)=﹣m2+m, ∴FQ=(﹣m2+m)=﹣(m﹣2)2+ ∵﹣<0, ∴QF有最大值. ∴当m=2时,QF有最大值. 13.已知抛物线y=ax2+bx+c过点A(0,2). (1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式; (2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°. ①求抛物线的解析式; ②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN. 【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2), ∴c=2. 又∵点(﹣,0)也在该抛物线上, ∴a(﹣)2+b(﹣)+c=0, ∴2a﹣b+2=0(a≠0). (2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0, ∴x1﹣x2<0,y1﹣y2<0, ∴当x<0时,y随x的增大而增大; 同理:当x>0时,y随x的增大而减小, ∴抛物线的对称轴为y轴,开口向下, ∴b=0. ∵OA为半径的圆与拋物线的另两个交点为B、C, ∴△ABC为等腰三角形, 又∵△ABC有一个内角为60°, ∴△ABC为等边三角形. 设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°, 又∵OB=OC=OA=2, ∴CD=OC•cos30°=,OD=OC•sin30°=1. 不妨设点C在y轴右侧,则点C的坐标为(,﹣1). ∵点C在抛物线上,且c=2,b=0, ∴3a+2=﹣1, ∴a=﹣1, ∴抛物线的解析式为y=﹣x2+2. ②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2). 直线OM的解析式为y=k1x(k1≠0). ∵O、M、N三点共线, ∴x1≠0,x2≠0,且=, ∴﹣x1+=﹣x2+, ∴x1﹣x2=﹣, ∴x1x2=﹣2,即x2=﹣, ∴点N的坐标为(﹣,﹣+2). 设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2). ∵点P是点O关于点A的对称点, ∴OP=2OA=4, ∴点P的坐标为(0,4). 设直线PM的解析式为y=k2x+4, ∵点M的坐标为(x1,﹣+2), ∴﹣+2=k2x1+4, ∴k2=﹣, ∴直线PM的解析式为y=﹣x+4. ∵﹣•+4==﹣+2, ∴点N′在直线PM上, ∴PA平分∠MPN. 14.如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5). (1)求出这条抛物线的表达式; (2)当t=0时,求S△OBN的值; (3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时,S有最大值,最大值是多少? 【解答】解:(1)将E(5,5)、F(10,0)代入y=ax2+bx, ,解得:, ∴抛物线的表达式为y=﹣x2+2x. (2)当t=0时,点B的坐标为(1,0),点N的坐标为(1,), ∴BN=,OB=1, ∴S△OBN=BN•OB=. (3)①当0<t≤4时(图1),点A的坐标为(t,0),点B的坐标为(t+1,0), ∴点M的坐标为(t,﹣t2+2t),点N的坐标为(t+1,﹣(t+1)2+2(t+1)), ∴AM=﹣t2+2t,BN=﹣(t+1)2+2(t+1), ∴S=(AM+BN)•AB=×1×[﹣t2+2t﹣(t+1)2+2(t+1)], =﹣t2+t+, =﹣(t﹣)2+, ∵﹣<0, ∴当t=4时,S取最大值,最大值为; ②当4<t≤5时(图2),点A的坐标为(t,0),点B的坐标为(t+1,0), ∴点M的坐标为(t,﹣t2+2t),点N的坐标为(t+1,﹣(t+1)2+2(t+1)), ∴AM=﹣t2+2t,BN=﹣(t+1)2+2(t+1), ∴S=(5﹣t)(﹣t2+2t+5)+(t﹣4)[5﹣(t+1)2+2(t+1)], =(t3﹣3t2+5t+25)+(﹣t3+t2+t﹣), =﹣t2+t﹣, =﹣(t﹣)2+, ∵﹣<0, ∴当t=时,S取最大值,最大值为. ∵=<, ∴当t=时,S有最大值,最大值是. 15.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M. (1)求该抛物线所表示的二次函数的表达式; (2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形? (3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由. 【解答】 解:(1)由抛物线过点A(﹣1,0)、B(4,0)可设解析式为y=a(x+1)(x﹣4), 将点C(0,2)代入,得:﹣4a=2, 解得:a=﹣, 则抛物线解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2; (2)由题意知点D坐标为(0,﹣2), 设直线BD解析式为y=kx+b, 将B(4,0)、D(0,﹣2)代入,得:, 解得:, ∴直线BD解析式为y=x﹣2, ∵QM⊥x轴,P(m,0), ∴Q(m,﹣m2+m+2)、M(m,m﹣2), 则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4, ∵F(0,)、D(0,﹣2), ∴DF=, ∵QM∥DF, ∴当﹣m2+m+4=时,四边形DMQF是平行四边形, 解得:m=﹣1(舍)或m=3, 即m=3时,四边形DMQF是平行四边形; (3)如图所示: ∵QM∥DF, ∴∠ODB=∠QMB, 分以下两种情况: ①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ, 则===, ∵∠MBQ=90°, ∴∠MBP+∠PBQ=90°, ∵∠MPB=∠BPQ=90°, ∴∠MBP+∠BMP=90°, ∴∠BMP=∠PBQ, ∴△MBQ∽△BPQ, ∴=,即=, 解得:m1=3、m2=4, 当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去, ∴m=3,点Q的坐标为(3,2); ②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′, 此时m=﹣1,点Q的坐标为(﹣1,0); 综上,点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似. 16.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN. (1)求抛物线的解析式及点D的坐标; (2)当△CMN是直角三角形时,求点M的坐标; (3)试求出AM+AN的最小值. 【解答】解:(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得, ∴抛物线解析式为y=﹣x2+x+4; ∵AC=BC,CO⊥AB, ∴OB=OA=3, ∴B(3,0), ∵BD⊥x轴交抛物线于点D, ∴D点的横坐标为3, 当x=3时,y=﹣×9+×3+4=5, ∴D点坐标为(3,5); (2)在Rt△OBC中,BC===5, 设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1, ∵∠MCN=∠OCB, ∴当=时,△CMN∽△COB,则∠CMN=∠COB=90°,即=,解得m= ,此时M点坐标为(0,); 当=时,△CMN∽△CBO,则∠CNM=∠COB=90°,即=,解得m=,此时M点坐标为(0,); 综上所述,M点的坐标为(0,)或(0,); (3)连接DN,AD,如图, ∵AC=BC,CO⊥AB, ∴OC平分∠ACB, ∴∠ACO=∠BCO, ∵BD∥OC, ∴∠BCO=∠DBC, ∵DB=BC=AC=5,CM=BN, ∴△ACM≌△DBN, ∴AM=DN, ∴AM+AN=DN+AN, 而DN+AN≥AD(当且仅当点A、N、D共线时取等号), ∴DN+AN的最小值==, ∴AM+AN的最小值为. 17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C. (1)求抛物线的表达式; (2)如图② ,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ. (1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标; (Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由. 【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx+3,得: ,解得:, ∴抛物线的表达式为y=﹣x2+2x+3. (2)(I)当点P的横坐标为﹣时,点Q的横坐标为, ∴此时点P的坐标为(﹣,),点Q的坐标为(,﹣). 设直线PQ的表达式为y=mx+n, 将P(﹣,)、Q(,﹣)代入y=mx+n,得: ,解得:, ∴直线PQ的表达式为y=﹣x+. 如图②,过点D作DE∥y轴交直线PQ于点E, 设点D的坐标为(x,﹣x2+2x+3),则点E的坐标为(x,﹣x+), ∴DE=﹣x2+2x+3﹣(﹣x+)=﹣x2+3x+, ∴S△DPQ=DE•(xQ﹣xP)=﹣2x2+6x+=﹣2(x﹣)2+8. ∵﹣2<0, ∴当x=时,△DPQ的面积取最大值,最大值为8,此时点D的坐标为(,). (II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t, ∴点P的坐标为(t,﹣t2+2t+3),点Q的坐标为(4+t,﹣(4+t)2+2(4+t)+3), 利用待定系数法易知,直线PQ的表达式为y=﹣2(t+1)x+t2+4t+3. 设点D的坐标为(x,﹣x2+2x+3),则点E的坐标为(x,﹣2(t+1)x+t2+4t+3), ∴DE=﹣x2+2x+3﹣[﹣2(t+1)x+t2+4t+3]=﹣x2+2(t+2)x﹣t2﹣4t, ∴S△DPQ=DE•(xQ﹣xP)=﹣2x2+4(t+2)x﹣2t2﹣8t=﹣2[x﹣(t+2)]2+8. ∵﹣2<0, ∴当x=t+2时,△DPQ的面积取最大值,最大值为8. ∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8. 18.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. (3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标. 【解答】解:(1)∵抛物线的顶点坐标为(2,0), 设抛物线的解析式为y=a(x﹣2)2. ∵该抛物线经过点(4,1), ∴1=4a,解得:a=, ∴抛物线的解析式为y=(x﹣2)2=x2﹣x+1. (2)联立直线AB与抛物线解析式成方程组,得: ,解得:,, ∴点A的坐标为(1,),点B的坐标为(4,1). 作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示). ∵点B(4,1),直线l为y=﹣1, ∴点B′的坐标为(4,﹣3). 设直线AB′的解析式为y=kx+b(k≠0), 将A(1,)、B′(4,﹣3)代入y=kx+b,得: ,解得:, ∴直线AB′的解析式为y=﹣x+, 当y=﹣1时,有﹣x+=﹣1, 解得:x=, ∴点P的坐标为(,﹣1). (3)∵点M到直线l的距离与点M到点F的距离总是相等, ∴(m﹣x0)2+(n﹣y0)2=(n+1)2, ∴m2﹣2x0m+x02﹣2y0n+y02=2n+1. ∵M(m,n)为抛物线上一动点, ∴n=m2﹣m+1, ∴m2﹣2x0m+x02﹣2y0(m2﹣m+1)+y02=2(m2﹣m+1)+1, 整理得:(1﹣﹣y0)m2+(2﹣2x0+2y0)m+x02+y02﹣2y0﹣3=0. ∵m为任意值, ∴, ∴, ∴定点F的坐标为(2,1). 19.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P. (Ⅰ)当抛物线经过点A时,求顶点P的坐标; (Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式; (Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式. 【解答】解:(Ⅰ)∵抛物线y=x2+mx﹣2m经过点A(1,0), ∴0=1+m﹣2m, 解得:m=1, ∴抛物线解析式为y=x2+x﹣2, ∵y=x2+x﹣2=(x+)2﹣, ∴顶点P的坐标为(﹣,﹣); (Ⅱ)抛物线y=x2+mx﹣2m的顶点P的坐标为(﹣,﹣), 由点A(1,0)在x轴的正半轴上,点P在x轴的下方,∠AOP=45°知点P在第四象限, 如图1,过点P作PQ⊥x轴于点Q, 则∠POQ=∠OPQ=45°, 可知PQ=OQ,即=﹣, 解得:m1=0,m2=﹣10, 当m=0时,点P不在第四象限,舍去; ∴m=﹣10, ∴抛物线的解析式为y=x2﹣10x+20; (Ⅲ)由y=x2+mx﹣2m=x2+m(x﹣2)可知当x=2时,无论m取何值时y都等于4, ∴点H的坐标为(2,4), 过点A作AD⊥AH,交射线HP于点D,分别过点D、H作x轴的垂线,垂足分别为E、G, 则∠DEA=∠AGH=90°, ∵∠DAH=90°,∠AHD=45°, ∴∠ADH=45°, ∴AH=AD, ∵∠DAE+∠HAG=∠AHG+∠HAG=90°, ∴∠DAE=∠AHG, ∴△ADE≌△HAG, ∴DE=AG=1、AE=HG=4, 则点D的坐标为(﹣3,1)或(5,﹣1); ①当点D的坐标为(﹣3,1)时,可得直线DH的解析式为y=x+, ∵点P(﹣,﹣)在直线y=x+上, ∴﹣=×(﹣)+, 解得:m1=﹣4、m2=﹣, 当m=﹣4时,点P与点H重合,不符合题意, ∴m=﹣; ②当点D的坐标为(5,﹣1)时,可得直线DH的解析式为y=﹣x+, ∵点P(﹣,﹣)在直线y=﹣x+上, ∴﹣=﹣×(﹣)+, 解得:m1=﹣4(舍),m2=﹣, 综上,m=﹣或m=﹣, 则抛物线的解析式为y=x2﹣x+或y=x2﹣x+. 20.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧). (1)求函数y=ax2+bx+c的解析式; (2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率; (3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由. 【解答】解:(1)y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2. 把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4, ∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4; (2)∵y=x2+2x+1=(x+1)2, ∴A(﹣1,0), 当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0); 当x=0时,y=﹣x2+4=4,则B(0,4), 从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB, ∵AC=3,AD=1,CD=4,AB=,BC=2,BD=2, ∴△BCD为等腰三角形, ∴构造的三角形是等腰三角形的概率=; (3)存在. 易得BC的解析是为y=﹣2x+4,S△ABC=AC•OB=×3×4=6, M点的坐标为(m,﹣2m+4)(0≤m≤2), ①当N点在AC上,如图1, ∴△AMN的面积为△ABC面积的, ∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1, 当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4, ∴tan∠MAC===4; 当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2, ∴tan∠MAC===1; ②当N点在BC上,如图2, BC==2, ∵BC•AN=AC•BC,解得AN==, ∵S△AMN=AN•MN=2, ∴MN==, ∴∠MAC===; ③当N点在AB上,如图3,作AH⊥BC于H,设AN=t,则BN=﹣t, 由②得AH=,则BH==, ∵∠NBG=∠HBA, ∴△BNM∽△BHA, ∴=,即=, ∴MN=, ∵AN•MN=2, 即•(﹣t)•=2, 整理得3t2﹣3t+14=0,△=(﹣3)2﹣4×3×14=﹣15<0,方程没有实数解, ∴点N在AB上不符合条件, 综上所述,tan∠MAN的值为1或4或. 21.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3). (1)求该抛物线的解析式; (2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标; (3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由. 【解答】解:(1)把A(3,0),B(﹣1,0),C(0,﹣3)代入抛物线解析式得:, 解得:, 则该抛物线解析式为y=x2﹣2x﹣3; (2)设直线BC解析式为y=kx﹣3, 把B(﹣1,0)代入得:﹣k﹣3=0,即k=﹣3, ∴直线BC解析式为y=﹣3x﹣3, ∴直线AM解析式为y=x+m, 把A(3,0)代入得:1+m=0,即m=﹣1, ∴直线AM解析式为y=x﹣1, 联立得:, 解得:, 则M(﹣,﹣); (3)存在以点B,C,Q,P为顶点的四边形是平行四边形, 分三种情况考虑: 设Q(x,0),P(m,m2﹣2m﹣3), 当四边形BCQP为平行四边形时,由B(﹣1,0),C(0,﹣3), 根据平移规律得:﹣1+x=0+m,0+0=﹣3+m2﹣2m﹣3, 解得:m=1±,x=2±, 当m=1+时,m2﹣2m﹣3=8+2﹣2﹣2﹣3=3,即P(1+,2); 当m=1﹣时,m2﹣2m﹣3=8﹣2﹣2+2﹣3=3,即P(1﹣,2); 当四边形BCPQ为平行四边形时,由B(﹣1,0),C(0,﹣3), 根据平移规律得:﹣1+m=0+x,0+m2﹣2m﹣3=﹣3+0, 解得:m=0或2, 当m=0时,P(0,﹣3)(舍去);当m=2时,P(2,﹣3), 当四边形BQCP是平行四边形时, 由平移规律得:﹣1+0=m+x,0﹣3=m2﹣2m﹣3, 解得:m=0或2,x=﹣1或﹣3, 当m=0时,P(0,﹣3)(舍去);当m=2时,P(2,﹣3), 综上,存在以点B,C,Q,P为顶点的四边形是平行四边形,P的坐标为(1+,3)或(1﹣,3)或(2,﹣3). 22.已知顶点为A抛物线经过点,点. (1)求抛物线的解析式; (2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积; (3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标. 【解答】解:(1)把点代入, 解得:a=1, ∴抛物线的解析式为:; (2)由知A(,﹣2), 设直线AB解析式为:y=kx+b,代入点A,B的坐标, 得:, 解得:, ∴直线AB的解析式为:y=﹣2x﹣1, 易求E(0,1),,, 若∠OPM=∠MAF, ∴OP∥AF, ∴△OPE∽△FAE, ∴, ∴, 设点P(t,﹣2t﹣1),则: 解得,, 由对称性知;当时,也满足∠OPM=∠MAF, ∴,都满足条件, ∵△POE的面积=, ∴△POE的面积为或. (3)若点Q在AB上运动,如图1, 设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a, 由翻折知QN′=QN=﹣2a、N′E=NE=﹣a, 由∠QN′E=∠N=90°易知△QRN′∽△N′SE, ∴==,即===2, ∴QR=2、ES=, 由NE+ES=NS=QR可得﹣a+=2, 解得:a=﹣, ∴Q(﹣,); 若点Q在BC上运动,且Q在y轴左侧,如图2, 设NE=a,则N′E=a, 易知RN′=2、SN′=1、QN′=QN=3, ∴QR=、SE=﹣a, 在Rt△SEN′中,(﹣a)2+12=a2, 解得:a=, ∴Q(﹣,2); 若点Q在BC上运动,且点Q在y轴右侧,如图3, 设NE=a,则N′E=a, 易知RN′=2、SN′=1、QN′=QN=3, ∴QR=、SE=﹣a, 在Rt△SEN′中,(﹣a)2+12=a2, 解得:a=, ∴Q(,2). 综上,点Q的坐标为(﹣,)或(﹣,2)或(,2). 23.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°. (1)求抛物线的解析式; (2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题: ①求证:BC平分∠MBN; ②求△MBC外心的纵坐标的取值范围. 【解答】解:(1)∵抛物线过点A(0,2), ∴c=2, 当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0, ∴当x<0时,y随x的增大而增大, 同理当x>0时,y随x的增大而减小, ∴抛物线的对称轴为y轴,且开口向下,即b=0, ∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示, ∴△ABC为等腰三角形, ∵△ABC中有一个角为60°, ∴△ABC为等边三角形,且OC=OA=2, 设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°, ∴BD=OB•cos30°=,OD=OB•sin30°=1, ∵B在C的左侧, ∴B的坐标为(﹣,﹣1), ∵B点在抛物线上,且c=2,b=0, ∴3a+2=﹣1, 解得:a=﹣1, 则抛物线解析式为y=﹣x2+2; (2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2), ∵MN与直线y=﹣2x平行, ∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x12+2x1+2, ∴直线MN解析式为y=﹣2x﹣x12+2x1+2, 把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1, ∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10, 作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示, ∵M,N位于直线BC的两侧,且y1>y2,则y2<﹣1<y1≤2,且﹣<x1<x2, ∴ME=y1﹣(﹣1)=﹣x12+3,BE=x1﹣(﹣)=x1+,NF=﹣1﹣y2=x12﹣4x1+9,BF=x2﹣(﹣)=3﹣x1, 在Rt△BEM中,tan∠MBE===﹣x1, 在Rt△BFN中,tan∠NBF=====﹣x1, ∵tan∠MBE=tan∠NBF, ∴∠MBE=∠NBF, 则BC平分∠MBN; ②∵y轴为BC的垂直平分线, ∴设△MBC的外心为P(0,y0),则PB=PM,即PB2=PM2, 根据勾股定理得:3+(y0+1)2=x12+(y0﹣y1)2, ∵x12=2﹣y1, ∴y02+2y0+4=(2﹣y1)+(y0﹣y1)2,即y0=y1﹣1, 由①得:﹣1<y1≤2, ∴﹣<y0≤0, 则△MBC的外心的纵坐标的取值范围是﹣<y0≤0. 24.如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3. (1)求该二次函数的解析式; (2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标; (3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标. 【解答】解:(1)∵抛物线过原点,对称轴是直线x=3, ∴B点坐标为(6,0), 设抛物线解析式为y=ax(x﹣6), 把A(8,4)代入得a•8•2=4,解得a=, ∴抛物线解析式为y=x(x﹣6),即y=x2﹣x; (2)设M(t,0), 易得直线OA的解析式为y=x, 设直线AB的解析式为y=kx+b, 把B(6,0),A(8,4)代入得,解得, ∴直线AB的解析式为y=2x﹣12, ∵MN∥AB, ∴设直线MN的解析式为y=2x+n, 把M(t,0)代入得2t+n=0,解得n=﹣2t, ∴直线MN的解析式为y=2x﹣2t, 解方程组得,则N(t,t), ∴S△AMN=S△AOM﹣S△NOM =•4•t﹣•t•t =﹣t2+2t =﹣(t﹣3)2+3, 当t=3时,S△AMN有最大值3,此时M点坐标为(3,0); (3)设Q(m,m2﹣m), ∵∠OPQ=∠ACO, ∴当=时,△PQO∽△COA,即=, ∴PQ=2PO,即|m2﹣m|=2|m|, 解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,0); 解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,0); ∴当=时,△PQO∽△CAO,即=, ∴PQ=PO,即|m2﹣m|=|m|, 解方程m2﹣m=m得m1=0(舍去),m2=8(舍去), 解方程m2﹣m=﹣m得m1=0(舍去),m2=4,此时P点坐标为(4,0); 综上所述,P点坐标为(14,0)或(﹣2,0)或(4,0). 25.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点. (1)求抛物线的解析式,并写出D点的坐标; (2)F(x,y)是抛物线上的动点: ①当x>1,y>0时,求△BDF的面积的最大值; ②当∠AEF=∠DBE时,求点F的坐标. 【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入y=ax2+bx+c, ,解得:, ∴抛物线的解析式为y=﹣x2+2x+3. ∵y=﹣x2+2x+3=﹣(x﹣1)2+4, ∴顶点D的坐标为(1,4). (2)①过点F作FM∥y轴,交BD于点M,如图1所示. 设直线BD的解析式为y=mx+n(m≠0), 将(3,0)、(1,4)代入y=mx+n, ,解得:, ∴直线BD的解析式为y=﹣2x+6. ∵点F的坐标为(x,﹣x2+2x+3), ∴点M的坐标为(x,﹣2x+6), ∴FM=﹣x2+2x+3﹣(﹣2x+6)=﹣x2+4x﹣3, ∴S△BDF=FM•(yB﹣yD)=﹣x2+4x﹣3=﹣(x﹣2)2+1. ∵﹣1<0, ∴当x=2时,S△BDF取最大值,最大值为1. ②过点E作EN∥BD交y轴于点N,交抛物线于点F1 ,在y轴负半轴取ON′=ON,连接EN′,射线EN′交抛物线于点F2,如图2所示. ∵EF1∥BD, ∴∠AEF1=∠DBE. ∵ON=ON′,EO⊥NN′, ∴∠AEF2=∠AEF1=∠DBE. ∵E是线段AB的中点,A(﹣1,0),B(3,0), ∴点E的坐标为(1,0). 设直线EF1的解析式为y=﹣2x+b1, 将E(1,0)代入y=﹣2x+b1, ﹣2+b1=0,解得:b1=2, ∴直线EF1的解析式为y=﹣2x+2. 联立直线EF1、抛物线解析式成方程组,, 解得:,(舍去), ∴点F1的坐标为(2﹣,2﹣2). 当x=0时,y=﹣2x+2=2, ∴点N的坐标为(0,2), ∴点N′的坐标为(0,﹣2). 同理,利用待定系数法可求出直线EF2的解析式为y=2x﹣2. 联立直线EF2、抛物线解析式成方程组,, 解得:,(舍去), ∴点F2的坐标为(﹣,﹣2﹣2). 综上所述:当∠AEF=∠DBE时,点F的坐标为(2﹣,2﹣2)或(﹣,﹣2 ﹣2). 26.如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0). (1)求此抛物线的解析式; (2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围); (3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标. 【解答】解:(1)当x=0时,y=3, ∴A(0,3)即OA=3, ∵OA=OC, ∴OC=3, ∴C(3,0), ∵抛物线y=ax2+bx+3经过点B(﹣1,0),C(3,0) ∴, 解得:, ∴抛物线的解析式为:y=﹣x2+2x+3; (2)如图1,延长PE交x轴于点H, ∵y=﹣x2+2x+3=﹣(x﹣1)2+4, ∴D(1,4), 设直线CD的解析式为y=kx+b, 将点C(3,0)、D(1,4)代入,得: , 解得:, ∴y=﹣2x+6, ∴E(t,﹣2t+6),P(t,﹣t2+2t+3), ∴PH=﹣t2+2t+3,EH=﹣2t+6, ∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3; (3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N, ∵D(1,4),B(﹣1,0),C(3,0), ∴BK=2,KC=2, ∴DK垂直平分BC, ∴BD=CD, ∴∠BDK=∠CDK, ∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°, ∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°, ∴∠CDK+∠DEQ=45°,即∠RNE=45°, ∵ER⊥DK, ∴∠NER=45°, ∴∠MEQ=∠MQE=45°, ∴QM=ME, ∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH, ∴△DQT≌△ECH, ∴DT=EH,QT=CH, ∴ME=4﹣2(﹣2t+6), QM=MT+QT=MT+CH=t﹣1+(3﹣t), 4﹣2(﹣2t+6)=t﹣1+(3﹣t), 解得:t=, ∴P(,). 27.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0). (1)求抛物线F的解析式; (2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示); (3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2. ①判断△AA′B的形状,并说明理由; ②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由. 【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点(0,0)和(﹣,0), ∴,解得:, ∴抛物线F的解析式为y=x2+x. (2)将y=x+m代入y=x2+x,得:x2=m, 解得:x1=﹣,x2=, ∴y1=﹣+m,y2=+m, ∴y2﹣y1=(+m)﹣(﹣+m)=(m>0). (3)∵m=, ∴点A的坐标为(﹣,),点B的坐标为(,2). ∵点A′是点A关于原点O的对称点, ∴点A′的坐标为(,﹣). ①△AA′B为等边三角形,理由如下: ∵A(﹣,),B(,2),A′(,﹣), ∴AA′=,AB=,A′B=, ∴AA′=AB=A′B, ∴△AA′B为等边三角形. ②∵△AA′B为等边三角形, ∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y). (i)当A′B为对角线时,有, 解得:, ∴点P的坐标为(2,); (ii)当AB为对角线时,有, 解得:, ∴点P的坐标为(﹣,); (iii)当AA′为对角线时,有, 解得:, ∴点P的坐标为(﹣,﹣2). 综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2,)、(﹣,)和(﹣,﹣2). 28.已知:如图,一次函数y=kx﹣1的图象经过点A(3,m)(m>0),与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD. (1)求这个一次函数的表达式; (2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣,0),求这条抛物线的函数表达式. 【解答】解:(1)过点A作AF⊥x轴,过点B作BF⊥ CD于H,交AF于点F,过点C作CE⊥AF于点E 设AC=n,则CD=n ∵点B坐标为(0,﹣1) ∴CH=n+1,AF=m+1 ∵CH∥AF,BC=2AC ∴ 即: 整理得: n= Rt△AEC中, CE2+AE2=AC2 ∴5+(m﹣n)2=n2 把n=代入 5+(m﹣)2=()2 解得m1=5,m2=﹣3(舍去) ∴n=3 ∴把A(3,5)代入y=kx﹣1得 k= ∴y=x﹣1 (2)如图,过点A作AE⊥CD于点E 设点P坐标为(2,n),由已知n>0 由已知,PD⊥x轴 ∴△PQD∽△APE ∴ ∴ 解得n1=7,n2=﹣2(舍去) 设抛物线解析式为y=a(x﹣h)2+k ∴y=a(x﹣2)2+7 把A(3,5)代入y=a(x﹣2)2+7 解得a=﹣ ∴抛物线解析式为:y=﹣ 29.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C. (1)求抛物线的解析式; (2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标; (3)抛物线上是否存在点Q,使得S△AOC=S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由. 【解答】解:(1)把A(,﹣3)和点B(3,0)代入抛物线得:, 解得:a=,b=﹣, 则抛物线解析式为y=x2﹣x; (2)当P在直线AD上方时, 设P坐标为(x,x2﹣x),则有AD=x﹣,PD=x2﹣x+3, 当△OCA∽△ADP时,=,即=, 整理得:3x2﹣9x+18=2x﹣6,即3x2﹣11x+24=0, 解得:x=,即x=或x=(舍去) 此时P(,﹣); 当△OCA∽△PDA时,=,即=, 整理得:x2﹣9x+6=6x﹣6,即x2﹣5x+12=0, 解得:x=,即x=4或(舍去), 此时P(4,6); 当P在直线AD下方时,同理可得:P的坐标为(0,0)或(,﹣), 综上,P的坐标为(,﹣)或(4,6)(0,0)或(,﹣); (3)在Rt△AOC中,OC=3,AC=, 根据勾股定理得:OA=2, ∵OC•AC=OA•h, ∴h=, ∵S△AOC=S△AOQ=, ∴△AOQ边OA上的高为, 过O作OM⊥OA,截取OM=,过M作MN∥OA,交y轴于点N,如图所示: 在Rt△OMN中,ON=2OM=9,即N(0,9), 过M作MH⊥x轴, 在Rt△OMH中,MH=OM=,OH=OM=,即M(,), 设直线MN解析式为y=kx+9, 把M坐标代入得:=k+9,即k=﹣,即y=﹣x+9, 联立得:, 解得:或,即Q(3,0)或(﹣2,15), 则抛物线上存在点Q,使得S△AOC=S△AOQ,此时点Q的坐标为(3,0)或(﹣2,15). 30.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1 的顶点为G. (1)求出抛物线C1的解析式,并写出点G的坐标; (2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值: (3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由. 【解答】解:(1)∵点A的坐标为(﹣1,0), ∴OA=1, ∴OC=3OA, ∴点C的坐标为(0,3), 将A、C坐标代入y=ax2﹣2ax+c,得: , 解得:, ∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4, 所以点G的坐标为(1,4). (2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k, 过点G′作G′D⊥x轴于点D,设BD′=m, ∵△A′B′G′为等边三角形, ∴G′D=B′D=m, 则点B′的坐标为(m+1,0),点G′的坐标为(1,m), 将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得: , 解得:(舍),, ∴k=1; (3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2), ∴PQ=OA=1, ∵∠AOQ、∠PQN均为钝角, ∴△AOQ≌△PQN, 如图2,延长PQ交直线y=﹣1于点H, 则∠QHN=∠OMQ=90°, 又∵△AOQ≌△PQN, ∴OQ=QN,∠AOQ=∠PQN, ∴∠MOQ=∠HQN, ∴△OQM≌△QNH(AAS), ∴OM=QH,即x=﹣x2+2x+2+1, 解得:x=(负值舍去), 当x=时,HN=QM=﹣x2+2x+2=,点M(,0), ∴点N坐标为(+,﹣1),即(,﹣1); 或(﹣,﹣1),即(1,﹣1); 如图3, 同理可得△OQM≌△PNH, ∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1, 解得:x=﹣1(舍)或x=4, 当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6, ∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1); 综上点M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1); M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1). 31.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点. (1)求二次函数的解析式及点E的坐标. (2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标. (3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标. 【解答】解:(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:, 解得:,即二次函数解析式为y=﹣x2+x+2, 联立一次函数解析式得:, 消去y得:﹣x+2=﹣x2+x+2, 解得:x=0或x=3, 则E(3,1); (2)如图①,过M作MH∥y轴,交CE于点H, 设M(m,﹣m2+m+2),则H(m,﹣m+2), ∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m, S四边形COEM=S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3, 当m=﹣=时,S最大=,此时M坐标为(,3); (3)连接BF,如图②所示, 当﹣x2+x+20=0时,x1=,x2=, ∴OA=,OB=, ∵∠ACO=∠ABF,∠AOC=∠FOB, ∴△AOC∽△FOB, ∴=,即=, 解得:OF=, 则F坐标为(0,﹣). 32.如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B. (1)求m的值; (2)求函数y=ax2+b(a≠0)的解析式; (3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由. 【解答】解:(1)将(0,﹣3)代入y=x+m, 可得:m=﹣3; (2)将y=0代入y=x﹣3得:x=3, 所以点B的坐标为(3,0), 将(0,﹣3)、(3,0)代入y=ax2+b中, 可得:, 解得:, 所以二次函数的解析式为:y=x2﹣3; (3)存在,分以下两种情况: ①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°, ∴OD=OC•tan30°=, 设DC为y=kx﹣3,代入(,0),可得:k=, 联立两个方程可得:, 解得:, 所以M1(3,6); ②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°, ∴OE=OC•tan60°=3, 设EC为y=kx﹣3,代入(3,0)可得:k=, 联立两个方程可得:, 解得:, 所以M2(,﹣2), 综上所述M的坐标为(3,6)或(,﹣2). 33.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点. (1)求抛物线的解析式和直线AC的解析式; (2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标; (3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. 【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3), 即y=ax2﹣2ax﹣3a, ∴﹣2a=2,解得a=﹣1, ∴抛物线解析式为y=﹣x2+2x+3; 当x=0时,y=﹣x2+2x+3=3,则C(0,3), 设直线AC的解析式为y=px+q, 把A(﹣1,0),C(0,3)代入得,解得, ∴直线AC的解析式为y=3x+3; (2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4, ∴顶点D的坐标为(1,4), 作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0), ∵MB=MB′, ∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小, 而BD的值不变, ∴此时△BDM的周长最小, 易得直线DB′的解析式为y=x+3, 当x=0时,y=x+3=3, ∴点M的坐标为(0,3); (3)存在. 过点C作AC的垂线交抛物线于另一点P,如图2, ∵直线AC的解析式为y=3x+3, ∴直线PC的解析式可设为y=﹣x+b, 把C(0,3)代入得b=3, ∴直线PC的解析式为y=﹣x+3, 解方程组,解得或,则此时P点坐标为(,); 过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b, 把A(﹣1,0)代入得+b=0,解得b=﹣, ∴直线PC的解析式为y=﹣x﹣, 解方程组,解得或,则此时P点坐标为(,﹣), 综上所述,符合条件的点P的坐标为(,)或(,﹣), 34.已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点. (1)求抛物线的解析式; (2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标; (3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点. ①求证:∠PDQ=90°; ②求△PDQ面积的最小值. 【解答】解:(1)将点(3,1)代入解析式,得:4a=1, 解得:a=, 所以抛物线解析式为y=(x﹣1)2; (2)由(1)知点D坐标为(1,0), 设点C的坐标为(x0,y0),(x0>1、y0>0), 则y0=(x0﹣1)2, 如图1,过点C作CF⊥x轴, ∴∠BOD=∠DFC=90°、∠DCF+∠CDF=90°, ∵∠BDC=90°, ∴∠BDO+∠CDF=90°, ∴∠BDO=∠DCF, ∴△BDO∽△DCF, ∴=, ∴==, 解得:x0=17,此时y0=64, ∴点C的坐标为(17,64). (3)①证明:设点P的坐标为(x1,y1),点Q为(x2,y2),(其中x1<1<x2,y1>0,y2>0), 由,得:x2﹣(4k+2)x+4k﹣15=0, ∴, ∴(x1﹣1)(x2﹣1)=﹣16, 如图2,分别过点P、Q作x轴的垂线,垂足分别为M、N, 则PM=y1=(x1﹣1)2,QN=y2=(x2﹣1)2, DM=|x1﹣1|=1﹣x1、DN=|x2﹣1|=x2﹣1, ∴PM•QN=DM•DN=16, ∴=, 又∠PMD=∠DNQ=90°, ∴△PMD∽△DNQ, ∴∠MPD=∠NDQ, 而∠MPD+∠MDP=90°, ∴∠MDP+∠NDQ=90°,即∠PDQ=90°; ②过点D作x轴的垂线交直线PQ于点G,则点G的坐标为(1,4), 所以DG=4, ∴S△PDQ=DG•MN=×4×|x1﹣x2|=2=8, ∴当k=0时,S△PDQ取得最小值16. 35.抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象. (1)点A,B,D的坐标分别为 (,0) , (3,0) , (,) ; (2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围; (3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由. 【解答】解:(1)当y=0时,有﹣x2+x﹣1=0, 解得:x1=,x2=3, ∴点A的坐标为(,0),点B的坐标为(3,0). ∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+, ∴点D的坐标为(,). 故答案为:(,0);(3,0);(,). (2)∵点E、点D关于直线y=t对称, ∴点E的坐标为(,2t﹣). 当x=0时,y=﹣x2+x﹣1=﹣1, ∴点C的坐标为(0,﹣1). 设线段BC所在直线的解析式为y=kx+b, 将B(3,0)、C(0,﹣1)代入y=kx+b, ,解得:, ∴线段BC所在直线的解析式为y=x﹣1. ∵点E在△ABC内(含边界), ∴, 解得:≤t≤. (3)当x<或x>3时,y=﹣x2+x﹣1; 当≤x≤3时,y=x2﹣x+1. 假设存在,设点P的坐标为(m,0),则点Q的横坐标为m. ①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1), ∵以CQ为直径的圆与x轴相切于点P, ∴CP⊥PQ, ∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2, 整理,得:m1=,m2=, ∴点P的坐标为(,0)或(,0); ②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2), ∵以CQ为直径的圆与x轴相切于点P, ∴CP⊥PQ, ∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2, 整理,得:11m2﹣28m+12=0, 解得:m3=,m4=2, ∴点P的坐标为(,0)或(1,0). 综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0). 36.如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y轴交于点B,连接AB. (1)求该抛物线的解析式; (2)将△ABO绕点O旋转,点B的对应点为点F. ①当点F落在直线AE上时,求点F的坐标和△ABF的面积; ②当点F到直线AE的距离为 时,过点F作直线AE的平行线与抛物线相交,请直接写出交点的坐标. 【解答】解:(1)将A,E点坐标代入函数解析式,得 , 解得, 抛物线的解析式是y=﹣x2+4x+5, (2)设AE的解析式为y=kx+b,将A,E点坐标代入,得 , 解得, AE的解析式为y=x+1, x=0时,y=1即C(0,1), 设F点坐标为(n,n+1), 由旋转的性质得,OF=OB=5, n2+(n+1)2=25,解得n1=﹣4,n2=3, F(﹣4,﹣3),F(3,4), 当F(﹣4,﹣3)时如图1, S△ABF=S△BCF﹣S△ABC=BC•|xF|﹣BC•|xA|=BC•(xA﹣xF) S△ABF=×4(﹣1+4)=6; 当F(3,4)时,如图2, S△ABF=S△BCF+S△ABC=BC•|xF|+BC•|xA|=BC•(xF﹣xA) S△ABF=×4(3+1)=8; (3)如图3, ∵∠HCG=∠ACO,∠HGC=∠COA, ∴△HGC∽△COA, ∵OA=OC=1,∴CG=HG=, 由勾股定理,得 HC==2, 直线AE向上平移2个单位或向下平移2个单位, l的解析是为y=x+3,l1的解析是为y=x﹣1, 联立解得x1=,x2=, ,解得x3=,x4=, F点的坐标为(,),(,),(, ),(,). 37.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC. (1)求点A、B、D的坐标; (2)若△AOD与△BPC相似,求a的值; (3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由. 【解答】解:(1)∵y=(x﹣a)(x﹣3)(0<a<3), ∴A(a,0),B(3,0). 当x=0时,y=3a, ∴D(0,3a); (2)∵A(a,0),B(3,0), ∴对称轴直线方程为:x=. 当x=时,y=﹣()2, ∴C(,﹣()2), PB=3﹣,PC=()2, ①若△AOD∽△BPC时,则=,即=, 解得a=±3(舍去); ②若△AOD∽△CPB时,则=,即=, 解得a=3(舍去)或a=. 所以a的值是. (3)能.理由如下: 联结BD,取中点M ∵D、O、B在同一个圆上,且圆心M为(,a). 若点C也在圆上,则MC=MB.即(﹣)2+(a+()2)2=(﹣3)2+(a﹣0)2, 整理,得 a4﹣14a2+45=0, 所以(a2﹣5)(a2﹣9)=0, 解得a1=,a2=﹣(舍),a3=3(舍),a4=﹣3(舍), ∴a=. 38.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2. (1)求抛物线的解析式; (2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当时,求k的值; (3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标. (坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=) 【解答】解:(1)根据题意得,, ∴, ∴抛物线解析式为y=x2+x; (2)∵直线y=kx+4与抛物线两交点的横坐标分别为x1,x2, ∴x2+x=kx+4, ∴x2﹣4(k﹣1)x﹣16=0, 根据根与系数的关系得,x1+x2=4(k﹣1),x1x2=﹣16, ∵, ∴2(x1﹣x2)=x1x2, ∴4(x1﹣x2)2=(x1x2)2, ∴4[(x1+x2)2﹣4x1x2]=(x1x2)2, ∴4[16(k﹣1)2+64]=162, ∴k=1; (3)如图,取OB的中点C, ∴BC=OB, ∵B(4,8), ∴C(2,4), ∵PQ∥OB, ∴点O到PQ的距离等于点O到OB的距离, ∵S△POQ:S△BOQ=1:2, ∴OB=2PQ, ∴PQ=BC,∵PQ∥OB, ∴四边形BCPQ是平行四边形, ∴PC∥AB, ∵抛物线的解析式为y=x2+x②, 令y=0, ∴x2+x=0, ∴x=0或x=﹣4, ∴A(﹣4,0), ∵B(4,8), ∴直线AB解析式为y=x+4,设直线PC的解析式为y=x+m, ∵C(2,4), ∴直线PC的解析式为y=x+2②, 联立①②解得,(舍)或, ∴P(﹣2,﹣2+2). 39.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点. (1)求抛物线的解析式; (2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE. ①求点P的坐标; ②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由. 【解答】解:(1)∵B(1,0), ∴OB=1, ∵OC=2OB=2, ∴C(﹣2,0), Rt△ABC中,tan∠ABC=2, ∴, ∴, ∴AC=6, ∴A(﹣2,6), 把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:, 解得:, ∴抛物线的解析式为:y=﹣x2﹣3x+4; (2)①∵A(﹣2,6),B(1,0), 易得AB的解析式为:y=﹣2x+2, 设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2), ∵PE=DE, ∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2), x=1(舍)或﹣1, ∴P(﹣1,6); ②∵M在直线PD上,且P(﹣1,6), 设M(﹣1,y), ∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2, BM2=(1+1)2+y2=4+y2, AB2=(1+2)2+62=45, 分三种情况: i)当∠AMB=90°时,有AM2+BM2=AB2, ∴1+(y﹣6)2+4+y2=45, 解得:y=3, ∴M(﹣1,3+)或(﹣1,3﹣); ii)当∠ABM=90°时,有AB2+BM2=AM2, ∴45+4+y2=1+(y﹣6)2, y=﹣1, ∴M(﹣1,﹣1), iii)当∠BAM=90°时,有AM2+AB2=BM2, ∴1+(y﹣6)2+45=4+y2, y=, ∴M(﹣1,); 综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,). 40.如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B(5,t),与抛物线的对称轴相交于点C. (1)求抛物线的解析式; (2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标; (3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式; (4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标. 【解答】解:(1)由已知点B坐标为(5,5) 把点B(5,5),A(3,0)代入y=ax2+bx,得 解得 ∴抛物线的解析式为:y= (2)由(1)抛物线对称轴为直线x=,则点C坐标为(,) ∴OC=,OB=5 当△OBA∽△OCP时, ∴ ∴OP= 当△OBA∽△OPC时, ∴ ∴OP=5 ∴点P坐标为(5,0)或(,0) (3)设点N坐标为(a,b),直线l′解析式为:y=x+c ∵直线l′y=x+c与x轴夹角为45° ∴△MEN为等腰直角三角形. 当把△MEN沿直线l′折叠时,四边形ENE′M为正方形 ∴点E′坐标为(a﹣b,b) ∵EE′平行于x轴 ∴E、E′关于抛物线对称轴对称 ∵ ∴b=2a﹣3 则点N坐标可化为(a,2a﹣3) 把点N坐标带入y= 得: 2a﹣3= 解得 a1=1,a2=6 ∵a=6时,b=2a﹣3=﹣9 由函数解析式可知函数最小值为﹣ ∴﹣<6 ∴a=6舍去 则点N坐标为(1,﹣1) 把N坐标代入y=x+c 则c=﹣2 ∴直线l′的解析式为:y=x﹣2 (4)由(3)K点坐标为(0,﹣2) 则△MOK为等腰直角三角形 ∴△M′OK′为等腰直角三角形,M′K′⊥直线l′ ∴当M′K′=M′F时,△M'FK′为等腰直角三角形 ∴F坐标为(2,0)或(﹣2,﹣4) 查看更多