初中数学图形对称及旋转常考题型练习

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

初中数学图形对称及旋转常考题型练习

精品文档,仅供学习与交流,如有侵权请联系网站删除初中数学图形对称及旋转常考题型练习 一.选择题1.以下图形中对称轴的数量小于3的是(  )A.B.C.D.2.如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是(  )A.3B.4C.5.5D.103.如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是(  )A.4B.3C.2D.2+4.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为(  )A.30°B.45°C.60°D.75°5.如图,将矩形纸片ABCD折叠,使点B与点D重合,折痕为MN,若AB=2,BC=4,那么线段MN的长为(  )A.B.C.D.26.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为(  )A.2B.C.D.17.如图,在直角坐标系中,矩形OABC的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点D的坐标为(  )A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)8.如图,矩形纸片ABCD中,AB=2,AD=6,将其折叠,使点D与点B重合,得折痕EF.则tan∠BFE的值是(  )A.B.1C.2D.39.如图,AD为△ABC的BC边上的中线,沿AD将△ACD折叠,C的对应点为C′,已知∠ADC=45°,BC=4,那么点B与C′的距离为(  )【精品文档】第5页\n精品文档,仅供学习与交流,如有侵权请联系网站删除A.3B.2C.2D.410.如图,等腰直角△ABC中,∠ACB=90°,点E为△ABC内一点,且∠BEC=90°,将△BEC绕C点顺时针旋转90°,使BC与AC重合,得到△AFC,连接EF交AC于点M,已知BC=10,CF=6,则AM:MC的值为(  )A.4:3B.3:4C.5:3D.3:511.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP逆时针旋转后,与△ACP′重合,如果AP=4,那么P,P′两点间的距离为(  )A.4B.4C.4D.812.△ABC中,∠ACB=90°,∠A=α,以C为中心将△ABC旋转θ角到△A1B1C(旋转过程中保持△ABC的形状大小不变)B点恰落在A1B1上,如图,则旋转角θ的大小为(  )A.α+10°B.α+20°C.αD.2α13.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是(  )A.50°B.60°C.70°D.80°14.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为(  )A.4B.5C.6D.715.如图,矩形ABCD绕点B逆时针旋转30°后得到矩形A1BC1D1,C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC=,则AF的长度为(  )A.2﹣B.C.D.﹣116.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是(  )A.B.2C.3D.2 二.填空题(共12小题)17.已知点P1(a,﹣3)和点P2(3,b)关于y轴对称,则a+b的值为  .18.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为  .19.如图,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE折叠,使点A正好与CD上的F点重合,若△FDE的周长为16,△FCB的周长为28,则FC的长为  .20.如图,E为正方形ABCD的边DC上一点,DE=2EC=2,将△BEC沿BE所在的直线对折得到△BEF,延长EF交BA的延长线于点M,则AM=  .【精品文档】第5页\n精品文档,仅供学习与交流,如有侵权请联系网站删除21.如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC边上的F处,M是AF的中点,连接BM,则sin∠ABM=  .22.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是  .23.将矩形ABCD纸片按如图所示的方式折叠,EF,EG为折痕,试问∠AEF+∠BEG=  .24.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么=  .25.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=  度.26.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=  .27.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF=  cm.28.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④、…则三角形⑩的直角顶点与坐标原点的距离为  . 三.解答题(共16小题)29.如图,在平行四边形ABCD中将△ABC沿AC对折,使点B落在B′处,AB′和CD相交于O,求证:OD=OB′.30.如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.31.如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=3,求AG、MN的长.【精品文档】第5页\n精品文档,仅供学习与交流,如有侵权请联系网站删除32.感知:如图①,在矩形ABCD中,点E是边BC的中点,将△ABE沿AE折叠,使点B落在矩形ABCD内部的点F处,延长AF交CD于点G,连结FC,易证∠GCF=∠GFC.探究:将图①中的矩形ABCD改为平行四边形,其他条件不变,如图②,判断∠GCF=∠GFC是否仍然相等,并说明理由.应用:如图②,若AB=5,BC=6,则△ADG的周长为  .33.如图,四边形ABCD表示一张矩形纸片,AB=10,AD=8.E是BC上一点,将△ABE沿折痕AE向上翻折,点B恰好落在CD边上的点F处,⊙O内切于四边形ABEF.求:(1)折痕AE的长;(2)⊙O的半径.34.如图,在△AOB中,OA=OB,∠AOB=50°,将△AOB绕O点顺时针旋转30°,得到△COD,OC交AB于点F,CD分别交AB、OB于点E、H.求证:EF=EH.35.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.36.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.37.如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,求线段B′E的值.38.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.39.如图,△ABC中,AB=AC=2,∠BAC=45°,将△ABC绕点A按顺时针方向旋转角α得到△AEF,且0°<α≤180°,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当α=90°时,求四边形AEDC的面积.【精品文档】第5页\n精品文档,仅供学习与交流,如有侵权请联系网站删除40.如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E.(1)求证:BC=BC′;(2)若AB=2,BC=1,求AE的长.41.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.(3)在图①中,若EG=4,GF=6,求正方形ABCD的边长.42.在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(1)如图①,当α=90°时,求AE′,BF′的长;(2)如图②,当α=135°时,求证:AE′=BF′,且AE′⊥BF′;(3)直线AE′与直线BF′相交于点P,当点P在坐标轴上时,分别表示出此时点E′、D′、F′的坐标(直接写出结果即可).43.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是  ,=  .(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.44.已知:在△AOB与△COD中,OA=OB,OC=OD,∠AOB=∠COD=90°.(1)如图1,点C、D分别在边OA、OB上,连结AD、BC,点M为线段BC的中点,连结OM,则线段AD与OM之间的数量关系是  ,位置关系是  ;(2)如图2,将图1中的△COD绕点O逆时针旋转,旋转角为α(0°<α<90°).连结AD、BC,点M为线段BC的中点,连结OM.请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的△COD绕点O逆时针旋转到使△COD的一边OD恰好与△AOB的边OA在同一条直线上时,点C落在OB上,点M为线段BC的中点.请你判断(1)中线段AD与OM之间的数量关系是否发生变化,写出你的猜想,并加以证明.【精品文档】第5页
查看更多

相关文章

您可能关注的文档