初中二次函数测试卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

初中二次函数测试卷

学有涯海无境教有方育无数二次函数全章测试一、填空题(每小题4分,共24分)1.抛物线y=-x2+15有最______点,其坐标是______.2.若抛物线y=x2-2x-2的顶点为A,与y轴的交点为B,则过A,B两点的直线的解析式为____________.3.若抛物线y=ax2+bx+c(a≠0)的图象与抛物线y=x2-4x+3的图象关于y轴对称,则函数y=ax2+bx+c的解析式为______.4.若抛物线y=x2+bx+c与y轴交于点A,与x轴正半轴交于B,C两点,且BC=2,S△ABC=3,则b=______.5.二次函数y=x2-6x+c的图象的顶点与原点的距离为5,则c=______.6.二次函数的图象在坐标平面内绕顶点旋转180°,再向左平移3个单位,向上平移5个单位后图象对应的二次函数解析式为____________.二、选择题(每小题4分,共28分)7.把二次函数的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是()A.(-5,1)B.(1,-5)C.(-1,1)D.(-1,3)8.若点(2,5),(4,5)在抛物线y=ax2+bx+c上,则它的对称轴是()\n学有涯海无境教有方育无数A.B.x=1C.x=2D.x=39.已知函数,当函数值y随x的增大而减小时,x的取值范围是()A.x<1B.x>1C.x>-2D.-2<x<410.二次函数y=a(x+k)2+k,当k取不同的实数值时,图象顶点所在的直线是()A.y=xB.x轴C.y=-xD.y轴11.图中有相同对称轴的两条抛物线,下列关系不正确的是()A.h=mB.k>nC.k=nD.h>0,k>012.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c=2;;④b<1.其中正确的结论是()A.①②B.②③\n学有涯海无境教有方育无数C.②④D.③④13.下列命题中,正确的是()①若a+b+c=0,则b2-4ac<0;②若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b2-4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3;④若b>a+c,则一元二次方程ax2+bx+c=0,有两个不相等的实数根.A.②④B.①③C.②③D.③④三、解答题(14-16每小题12分,17-18每小题16分共68分)14.把二次函数配方成y=a(x-h)2+k的形式,并求出它的图象的顶点坐标、对称轴方程,y<0时x的取值范围,并画出图象.15.已知二次函数y=ax2+bx+c(a≠0)的图象经过一次函数的图象与x轴、y\n学有涯海无境教有方育无数轴的交点,并也经过(1,1)点.求这个二次函数解析式,并求x为何值时,有最大(最小)值,这个值是什么?16.已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(m,0),B(n,0),且,(1)求此抛物线的解析式;(2)设此抛物线与y轴的交点为C,过C作一条平行x轴的直线交抛物线于另一点P,求△ACP的面积.17.已知抛物线y=ax2+bx+c经过点A(-1,0),且经过直线y=x-3与x轴的交点B及与y轴的交点C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.\n学有涯海无境教有方育无数18.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).根据图象提供的信息解答下面问题:(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?参考答案\n学有涯海无境教有方育无数1.高,(0,15).2.y=-x-2.3.y=x2+4x+3.4.b=-4.5.c=5或13.6.7.C.8.D.9.A.10.C.11.C.12.B.13.C.14.顶点坐标,对称轴方程x=3,当y<0时,2<x<4,图略.15.当时,16.(1)由得m=1,n=3.∴y=-x2+4x-3;(2)S△ACP=6.17.(1)直线y=x-3与坐标轴的交点坐标分别为B(3,0),C(0,-3),以A、B、C三点的坐标分别代入抛物线y=ax2+bx+c中,得解得∴所求抛物线的解析式是y=x2-2x-3.(2)y=x2-2x-3=(x-1)2-4,∴抛物线的顶点坐标为(1,-4).(3)经过原点且与直线y=x-3垂直的直线OM的方程为y=-x,设M(x,-x),因为M点在抛物线上,∴x2-2x-3=-x.\n学有涯海无境教有方育无数因点M在第四象限,取18.解:(1)一件商品在3月份出售时利润为:6-1=5(元).(2)由图象可知,一件商品的成本Q(元)是时间t(月)的二次函数,由图象可知,抛物线的顶点为(6,4),∴可设Q=a(t-6)2+4.又∵图象过点(3,1),∴1=a(3-6)2+4,解之由题知t=3,4,5,6,7.(3)由图象可知,M(元)是t(月)的一次函数,∴可设M=kt+b.∵点(3,6),(6,8)在直线上,解之其中t=3,4,5,6,7.∴当t=5时,元∴该公司在一月份内最少获利元.\n学有涯海无境教有方育无数
查看更多

相关文章

您可能关注的文档