初中数学入职测试试卷及 答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

初中数学入职测试试卷及 答案

学立方教育初中数学入职测试题一、填空题(每小题4分,共20分)1.设两个实数根,则=_______.2.已知a、b≠0,且则________.3.已知:Rt△ABC中,∠ACB=90°,CD⊥AB于D点,AB=2m,BD=m-1,.则m=___________.4.如图,AB是⊙O的直径,AB=4,过点B作⊙O的切线,C是切线上一点,且BC=2,P是线段OA中点,连结PC交⊙O于点D,过点P作PC的垂线,交切线BC于点E,交⊙O于点F,连结DF交AB于点G,则PE的长为.5.如图,已知双曲线(k为常数)与直线l相交于A、B两点,第一象限内的点M(点M在A的左侧)在双曲线上,设直线AM、BM分别与y轴交于P、Q两点.若AM=m•MP,BM=n•MQ,则m﹣n的值是______.二、解答题(共9分)6.某商店经销某玩具每个进价60元,每个玩具不得低于80元出售.玩具的销售单价m(元/个)与销售数量n(个)之间的函数关系如图所示.(1)试求表示线段AB的函数的解析式,并求出当销售数量n=20时单价m的值;(2)写出该店当一次销售n(n>10)个时,所获利润w(元)与n(个)之间的函数关系式:(3)店长李明经过一段时间的销售发现:卖27个赚的钱反而比卖30个赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他条件不变的情况下,店长应把售价最低价每个80元至少提高到多少?3\n7.如图,△ABC内接于半圆,圆心为O,AB是直径,过A作直线MN,若∠MAC=∠ABC.(1)求证:MN是半圆的切线;(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.求证:DE=AC;(3)在(2)的条件下,若△DFG的面积为S,且DG=a,GC=b,试求△BCG的面积.(用a、b、s的代数式表示)3\n笔试参考答案及评分标准一、填空题(每小题4分,共20分)题号12345答案-19-3或2-2二、解答题(共9分)6.解:(1)设m=kx+b,把A(10,100)和B(30,80)代入上式,得10k+b=100,30k+b=80,解得k=﹣1,b=110,XkB1.com∴线段AB的函数的解析式为m=﹣n+110(10≤n≤30);(2分)当n=20时,m=﹣20+110=90;(3分)XkB1.com(2)当10<n<30时,W=(m﹣60)n=(﹣n+110﹣60)n=﹣n2+50n,当n≥30时,W=(80﹣60)n=20n;(3)W=﹣n2+50n=﹣(n﹣25)2+625,①当10<n≤25时,W随n的增大而增大,即卖的越多,利润越大;②当25<n≤30时,W随n的增大而减小,即卖的越多,利润越小;∴卖27个赚的钱反而比卖30个赚的钱多.所以为了不出现这种现象,在其他条件不变的情况下,店长应把最低价每个80元至少提高到85元.三、解答题(共9分)7.解:(1)∵AB是直径,∴∠C=90°,∴∠CBA+∠BAC=90°,(1分)又∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即∠BAM=90°,∴OA⊥MN,(2分)∴MN是⊙O的切线;(3分)(2)连接OD交AC于H,∵D是AC中点,∴OD⊥AC,AH=AC,(4分)∵∠DOE=∠AOH,∠OHA=∠OED=90°,OA=OD,(5分)∴△OAH≌△ODE,∴DE=AH=AC;(6分)XkB1.com(3)连接AD,由(2)知△OAH≌△ODE,∴∠ODE=∠OAH,又∵OA=OD,∴∠ODA=∠OAD,∴∠ODA﹣ODE=∠OAD﹣∠OAH,即∠FDA=∠FAD,∴FD=FA,(7分)∵AB是直径,∴∠BDA=90°,∴∠FDA+∠GDF=90°,∠DAF+∠DGF=90°,∴∠GDF=∠DGF,∴FG=DF,∴FG=FA=FD,∴S△DGF=S△ADG,(8分)又∵△BCG∽△ADG,∴S△BCG:S△ADG=()2=()2,∴S△BCG=.3\n3
查看更多

相关文章

您可能关注的文档