经典小升初竞赛试题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

经典小升初竞赛试题

第一次课:整除问题基础知识:整除的四个性质和常见的几个数的整除特征经典例题展示1:将自然数1、2、3、----依次写下去组成一个数:12345678910111213----,如果写到某个自然数时,所组成的数恰好第一次被72整除,那么这个自然数是多少?经典例题展示2:一个十位数,如果各位上的数字都不相同,那么就称为“十全数”,例如,3785942160就是一个十全数。现在已知一个十全数能被1,2,3,----,18整除,并且它的前四位是4876,那么这个十全数是多少?【2002年南京杯赛考题】 第二次课:约数与倍数、质数与合数、末尾数字及完全平方数基础知识:这些数的基本概念、质数的判断方法、最大公约数与最小公倍数的性质以及求取的方法、平方数的性质等等经典例题展示1:N为自然数,且N+1、N+2、------、N+9与690都有大于1的公约数。N的最小值为多少?【2008年走进美妙数学花园考题】                                                                      经典例题展示2:一个四位数是一个完全平方数,并且前两位数字相等,后两位数字相等,求这个四位数?   \n                                                                经典例题展示3:如果一些不同质数的平均数为21,那么他们中最大的一个质数的最大可能值为多少?【2008年迎春杯复赛题】 第三次课:余数定理及带余除法基础知识:余数的性质、同余三个性质、中国剩余定理、余数规律经典例题展示1: 在大于2009的自然数中,被57除后,商与余数相等的数共有多少个?【2009年第十四届华杯赛初赛试题】 经典例题展示2: 一个自然数被7,8,9除的余数分别是1,2,3,并且三个商数的和是570,求这个自然数? 经典例题展示3:  11+22+33+44+---+20092009除以10的余数是多少? 第四次课:数论综合应用基础知识:奇偶性、位置原理、整数分拆\n经典例题展示1 把2008分成几个自然数的和,再求出这些数的乘积,要使得到的乘积尽可能的大,则这时乘积的所有不同质因数的和是多少?【弄清楚什么时候会拆出几个2?】 经典例题展示2 设N=301×302×---×2005×2006,请问:(1)N的末尾一共会出现多少个连续的数字“0”?(2)用N不断除以12,直到结果不能被12整除为止,一共可以除以多少次12? 经典例题展示3M、N是互为反序的两个三位数,且M>N。请问:(1)如果M和N的最大公约数是7,求M是多少?(2)如果M和N的最大公约数是21,求M是多少?
查看更多

相关文章

您可能关注的文档