- 2022-02-11 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
六年级下册数学教案 正比例 反比例 冀教版 (3)
第3课时 反比例 教学导航; 【教学内容】 反比例。(教材第47页例2)。 【教学目标】 1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。 2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。 【重点难点】 引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。 【教学准备】 投影仪。 教学过程; 【复习导入】 1.让学生说说什么是正比例,然后用投影出示下面的题。 下面各题中哪两种量成正比例?为什么? (1)每公顷产量一定,总产量和公顷数。 (2)一袋大米的重量一定,吃了的和剩下的。 (3)修房屋时,粉刷的面积和所需涂料的数量。 2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例? 教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。 【新课讲授】 1.教学例2。 创设情境。 教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化? 出示教材第47页例2的情境图和表格。 请学生认真观察表中数据的变化情况,组织学生分小组讨论: (1)水的高度和底面积变化有关系吗? (2)水的高度是怎样随着底面积变化的? (3)水的高度和底面积的变化有什么规律? 学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。 教师板书配合说明这一规律: 30×10=20×15=15×20=……=300 教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。 2.归纳反比例的意义。 组织学生小组内讨论:反比例的意义是什么? 学生小组内交流,指名汇报。 教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。 3.用字母表示。 如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示? 学生探讨后得出结果。 x×y=k(一定) 4.师:生活中还有哪些成反比例的量? 在教师的引导下,学生举例说明。如: (1)大米的质量一定,每袋质量和袋数成反比例。 (2)教室地板面积一定,每块地砖的面积和块数成反比例。 (3)长方形的面积一定,长和宽成反比例。 5.组织学生将例1与例2进行比较,小组内讨论: 正比例与反比例的相同点和不同点有哪些? 学生交流、汇报后,引导学生归纳: 相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。 不同点:正比例关系中比值一定,反比例关系中乘积一定。 6.你还有什么疑问 ?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。 反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。 【课堂作业】 1.教材第48页的“做一做”。 2.教材第51页第9、10题。 答案:1.(1)每天运的吨数和所需的天数两种量,它们是相关联的量。 (2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。 (3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。 2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。 第10题:50 100 12 【课堂小结】 说一说成反比例关系的量的变化特征。 【课后作业】 1.完成练习册中本课时的练习。 2.教材51~52页第8、14题。 答案: 2.第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。 第14题:(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。 (2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。 解答:从图像中可以知道斑马10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。 从图像中可以知道长颈鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。 (3)斑马跑得快。 板书设计; 第3课时 反比例 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。 用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定) 正比例与反比例的相同点和不同点: 相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。 不同点:正比例关系中比值一定,反比例关系中乘积一定。查看更多